Matching Items (25)
Filtering by

Clear all filters

150192-Thumbnail Image.png
Description
In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods

In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods typically found in the Southwest. The LCA analysis presented in this study includes the assessment of more than 8,500 single family detached units, and 130 miles of related roadway infrastructure. The study estimates embedded and GHG emissions as a function of building size (1,500 - 3000 square feet), number of stories (1 or 2), and exterior wall material composition (stucco, brick, block, wood), roof material composition (clay tile, cement tile, asphalt shingles, built up), and as a function of roadway typology per mile (asphalt local residential roads, collectors, arterials). While a hybrid economic input-out life-cycle assessment is applied to estimate the energy and GHG emissions impacts of the residential units, the PaLATE tool is applied to determine the environmental effects of pavements and roads. The results indicate that low density single family neighborhoods are 2 - 2.5 X more energy and GHG intensive, per residential dwelling (unit) built, than high density residential neighborhoods. This relationship holds regardless of whether the functional unit is per acre or per capita. The results also indicate that a typical low density neighborhood (less than 2 dwellings per acre) requires 78 percent more energy and resource in roadway infrastructure per residential unit than a traditional small lot high density (more than 6 dwelling per acre). Also, this study shows that new master planned communities tend to be more energy intensive than traditional non master planned residential developments.
ContributorsFrijia, Stephane (Author) / Guhathakurta, Subhrajit (Committee member) / Williams, Eric D. (Committee member) / Pijawka, David K (Committee member) / Arizona State University (Publisher)
Created2011
135656-Thumbnail Image.png
Description
Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.
ContributorsBessant, Justin Zachary (Author) / Friesen, Cody (Thesis director) / Lorzel, Heath (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136915-Thumbnail Image.png
Description
The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic

The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic activity of the materials was analyzed using methylene blue degradation as an indicator of photocatalytic activity. The amorphous material showed significant photocatalytic activity in methylene blue degradation experiments, removing 100% of a 0.1 mmol methylene blue solution in 20 minutes, compared to the monoclinic crystalline NaTaO3, which showed negligible photocatalytic activity. Additional electrochemical characterization studies were carried out with methyl viologen (MV2+) to determine the band structure of the materials. Performing these synthesis and characterization has provided insight into further investigation of amorphous NaTaO3 and what makes the material an effective and inexpensive photocatalyst.
ContributorsRorrer, Julie Elaine (Author) / Chan, Candace (Thesis director) / Bertoni, Mariana (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134338-Thumbnail Image.png
Description
A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the

A scheme has been developed for finding the gas and temperature profiles in an environmental transmission electron microscope (ETEM), using COMSOL Multiphysics and the finite element method (FEM). This model should permit better correlation between catalyst structure and activity, by providing a more accurate understanding of gas composition than the assumption of homogeneity typically used. While more data is needed to complete the model, current progress has identified several details about the system and its ideal modeling approach.
It is found that at the low pressures and flowrates of catalysis in ETEM, natural and forced convection are negligible forms of heat transfer. Up to 250 °C, radiation is also negligible. Gas conduction, being enhanced at low pressures, dominates.
Similarly, mass transport is dominated by diffusion, which is most accurately described by the Maxwell-Stefan model. Bulk fluid flow is highly laminar, and in fact borders the line between continuum and molecular flow. The no-slip boundary condition does not apply here, and both viscous slip and thermal creep must be considered. In the porous catalyst pellet considered in this work, Knudsen diffusion dominates, with bulk flow being best described by the Darcy-Brinkman equation.
With these physics modelled, it appears as though the gas homogeneity assumption is not completely accurate, breaking down in the porous pellet where reactions occur. While these results are not yet quantitative, this trend is likely to remain in future model iterations. It is not yet clear how significant this deviation is, though methods are proposed to minimize it if necessary.
Some model-experiment mismatch has been found which must be further explored. Experimental data shows a pressure dependence on the furnace temperature at constant power, a trend as-yet unresolvable by the model. It is proposed that this relates to the breakdown of the assumption of fluid continuity at low pressures and small dimensions, though no compelling mathematical formulation has been found. This issue may have significant ramifications on ETEM and ETEM experiment design.
ContributorsLangdon, Jayse Tanner (Author) / Crozier, Peter (Thesis director) / Hildreth, Owen (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164979-Thumbnail Image.png
Description

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or improving inherent esterification pathways. However, due to inequality in the biosynthesis of esters and their precursors (organic acid and alcohol), a significant amount of precursors are left unconverted, thereby lowering overall esterification efficiency. Therefore, the primary goal of the current research is to improve the ester titers by incorporating one more step of in vitro esterification with the culture broth, thereby esterifying the unconverted precursors using high efficiency commercial enzymes in the presence of compatible organic solvent. In principle, the medium containing the precursors will be treated with the enzyme in presence of organic solvent, where the precursors will be distributed in both the phases, aqueous and organic, based on their polarity, and the enzymatic esterification will happen at the interface. Hence, as a first step, efforts were made to optimize the reaction conditions, beginning with choosing the most efficient organic solvent and corresponding enzyme candidate. Our results showed that, for production of ethyl acetate through this reactive extraction approach, Novozyme435 exhibited significant esterification with chloroform, with almost 85% conversion efficiency. Further optimizations with phase ratios, pH and incubation time showed that the pH 6.0 (3.1 g/L) was the most optimum where ethyl acetate titer was found to improve 10 times than that at pH 7.0 (0.164 g/L) with the phase ratio of 1:1. The kinetic studies further added that the incubation at 37oC gives the maximum ethyl acetate production within 8h. After initial optimization studies, cell broth from E. coli cells transformed to overproduce an esterase was also tested with the reactive extraction method. It was found that there was a ~7.5X decrease in ethyl acetate production in the cell media versus synthetic samples with the same concentration of reactants. Such a large decrease indicates that enzymatic promiscuity or inhibition currently prevent the cell samples from reaching the same conversion as synthetic studies. To characterize the maximum reaction rate (Vmax) and affinity constants of the substrates to Novozym 435, further kinetic studies were performed with one minute of reaction. The mathematical model employed assumes that enzyme kinetics rather than diffusion was the rate limiting step, that the concentrations of reactants at the interface are equivalent to the initial concentration of reactants, and that neither substrate is an inhibitor. Vmax was found to be 18.5 Mmol min-1g-1 (of catalyst used), and the affinity constants were 0.957 M and 0.00557 M for acetic acid and ethanol respectively. Vmax was similar to literature values with Novozym 435, and the affinity constants indicate a much higher binding efficiency of ethanol in comparison to acetic acid, indicating that a cocktail of esters are likely produced from Novozym 435 in cell broth. Overall, moving away from fossil-fuel dependence is necessary to promote sustainable industry standards, and microbial cell factories combined with reactive extraction, if optimized for industrial applications, can replace harmful environmental procedures. By optimizing the reactive extraction process for ester production, biorefineries could become more competitive and economically feasible for numerous applications.

ContributorsKartchner, Danika (Author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Soundappan, Thiagarajan (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
189357-Thumbnail Image.png
Description
Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses

Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses on catalytic hydrogenation, an emerging technology capable of reducing nitrate to nitrogen gas using hydrogen gas (H2). This technology reduces nitrate at rates >95% and is an improvement over technologies used at water treatment plants, because the nitrate is chemically transformed with harmless byproducts and no nitrate brine. The goal of this dissertation is to upgrade the maturity of catalytic nitrate hydrogenation systems by overcoming several barriers hindering the scale-up of this technology. Objective 1 is to compare different methods of attaching the bimetallic catalyst to a hollow-fiber membrane surface to find a method that results in 1) minimized catalyst loss, and 2) repeatable nitrate removal over several cycles. Results showed that the In-Situ MCfR-H2 deposition was successful in reducing nitrate at a rate of 1.1 min-1gPd-1 and lost less than 0.05% of attached Pd and In cumulatively over three nitrate treatment cycles. Objective 2 is to synthesize catalyst-films with varied In3+ precursor decorated over a Pd0 surface to show the technology can 1) reliably synthesize In-Pd catalyst-films with varied bimetallic ratios, and 2) optimize nitrate removal activity by varying In-Pd ratio. Results showed that nitrate removal activity was optimized with a rate constant of 0.190 mg*min-1L-1 using a catalyst-film with a 0.045 In-Pd ratio. Objective 3 is to perform nitrate reduction in a continuous flow reactor for two months to determine if nitrate removal activity can be sustained over extended operation and identify methods to overcome catalyst deactivation. Results showed that a combination of increased hydraulic residence time and reduced pH was successful in increasing the nitrate removal and decreasing harmful nitrite byproduct selectivity to 0%. These objectives increased the technology readiness of this technology by enabling the reuse of the catalyst, maximizing nitrate reduction activity, and achieving long-term nitrate removal.
ContributorsLevi, Juliana (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Wong, Michael (Committee member) / Lind Thomas, Mary Laura (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2023
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023