Matching Items (13)
Filtering by

Clear all filters

150177-Thumbnail Image.png
Description
Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a water treatment plant in an effort to enable them to more readily meet DBP regulations. To perform this analysis existing water treatment models were used in conjunction with historic water quality sampling data to predict chemical usage necessary to meet DBP regulations. A retrospective analysis was performed for the summer months of 2007 regarding potential for the WTP to reduce cost through optimizing the source water by an average of 30% over the four-month period, accumulating to overall treatment savings of $154 per MG ($82 per AF).
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Fox, Peter (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
136512-Thumbnail Image.png
Description
The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human

The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human Evolution and Social Change during the summer of 2013. The Global Ethnohydrology Study is a transdisciplinary multi-year research initiative that examines the range of variation in local ecological knowledge of water issues, also known as "ethnohydrology." Participants were asked about their willingness, level of disgust, and concern with using treated wastewater for various daily activities. Additionally, they were asked to draw schematic representations of how wastewater should be treated to become drinkable again. Using visual content analysis, the drawings were coded for a variety of treatment levels and specific treatment processes. Conclusions about the perceived health implications from wastewater reuse that can stem from drinking treated wastewater were made. The relationship between humans and wastewater is one that has many direct social and health impacts on communities at large. In reaction to global limitations of freshwater, wastewater serves as a valuable resource to tap into. This research examines the cross-cultural public health concerns about treated wastewater in order to draw conclusions that can aid in strategic implementation of advocacy and public education about wastewater reuse.
ContributorsPatel, Sarah Shakir (Author) / Wutich, Amber (Thesis director) / Rice, Jacelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
137714-Thumbnail Image.png
Description
The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of

The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of water today and in the future were collected. The 9-11 year olds were asked to draw pictures of 1) how they saw water being used in their neighborhood today (T1), and 2) how they imagined water would be used in their neighborhood 100 years from now (T2). The artwork was collected and coded for nine different themes, including: vegetation, scarcity, pollution, commercial sources of water, existing technology, technology innovation, recreational use, domestic use, and natural sources of water. Statistically significant differences were found between boys and girls for vegetation, technology and domestic use themes. This project allows for a look into how climate change and water insecurity is viewed by younger generations and gives a voice to children so that they may share their outlooks on this vital resource.
ContributorsVins, Holly Elizabeth (Author) / Wutich, Amber (Thesis director) / Newland, Judy (Committee member) / Beresford, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
134590-Thumbnail Image.png
Description
The Culture, Health, and Environment Lab (CHEL) at Arizona State University uses anthropological methods and field-based studies to research how cultural knowledge may be used to help understand and respond to contemporary environmental and health issues—primarily the global challenges of water insecurity and obesity. In their efforts to research water

The Culture, Health, and Environment Lab (CHEL) at Arizona State University uses anthropological methods and field-based studies to research how cultural knowledge may be used to help understand and respond to contemporary environmental and health issues—primarily the global challenges of water insecurity and obesity. In their efforts to research water insecurity and it implications, CHEL has been working on studying water insecurity through the Global Ethnohydrology Study (GES). The Global Ethnohydrology study examines local knowledge and perceptions of water issues, using transdisciplinary methods in a multi-year and cross-country program. In the 2015-2016 study, the GES examined water, hygiene norms, and hygiene stigma. It sought to investigate how hygiene norms are impacted by the level of water security, examining if water-poor communities have laxer laxer or more accommodating hygiene norms. This paper will explore the development of the codebook for this study, following the process in which the qualitative data from the GES 2015 was organized through a series of codes so that it may later be analyzed.
ContributorsPfeiffer, Ainsley Josephine (Author) / Wutich, Amber (Thesis director) / Schuster, Roseanne (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134775-Thumbnail Image.png
Description
In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival

In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival data, participant- observation, focal follows with water distributors that serve homeless populations, phone and internet surveys with social service providers, and expert interviews with 14 local service providers. We analyzed this data using methods for thematic coding and geospatial analysis. We find that the sources of water and geographic availability vary across the economic sectors of the population and that they become more unconventional and more difficult to access with further isolation. We conclude that many persons who are experience homelessness have inconsistent and unreliable access to water for hydrating, maintaining hygiene, cooking and cleaning for reasons that are largely due to geographic inaccessibility.
ContributorsWarpinski, Chloe Larue (Author) / Wutich, Amber (Thesis director) / Whelan, Mary (Committee member) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018
154132-Thumbnail Image.png
Description
The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.
ContributorsLinks, Alexander Glenn (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2015
153868-Thumbnail Image.png
Description
The need for rapid, specific and sensitive assays that provide a detection of bacterial indicators are important for monitoring water quality. Rapid detection using biosensor is a novel approach for microbiological testing applications. Besides, validation of rapid methods is an obstacle in adoption of such new bio-sensing technologies.

The need for rapid, specific and sensitive assays that provide a detection of bacterial indicators are important for monitoring water quality. Rapid detection using biosensor is a novel approach for microbiological testing applications. Besides, validation of rapid methods is an obstacle in adoption of such new bio-sensing technologies. In this study, the strategy developed is based on using the compound 4-methylumbelliferyl glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-D-glucuronidase (GUD) enzyme to yield a fluorogenic product that can be quantified and directly related to the number of E. coli cells present in water samples. The detection time required for the biosensor response ranged from 30 to 120 minutes, depending on the number of bacteria. The specificity of the MUG based biosensor platform assay for the detection of E. coli was examined by pure cultures of non-target bacterial genera and also non-target substrates. GUD activity was found to be specific for E. coli and no such enzymatic activity was detected in other species. Moreover, the sensitivity of rapid enzymatic assays was investigated and repeatedly determined to be less than 10 E. coli cells per reaction vial concentrated from 100 mL of water samples. The applicability of the method was tested by performing fluorescence assays under pure and mixed bacterial flora in environmental samples. In addition, the procedural QA/QC for routine monitoring of drinking water samples have been validated by comparing the performance of the biosensor platform for the detection of E. coli and culture-based standard techniques such as Membrane Filtration (MF). The results of this study indicated that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. The procedural QA/QC of the biosensor will provide both industry and regulatory authorities a useful tool for near real-time monitoring of E. coli in drinking water samples. Furthermore, this system can be applied independently or in conjunction with other methods as a part of an array of biochemical assays in order to reliably detect E. coli in water.
ContributorsHesari, Nikou (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2015
153743-Thumbnail Image.png
Description
Six high-production-volume neonicotinoids were traced through a municipal wastewater treatment plant (WWTP) and engineered wetland located downstream, in a study motivated by reports on these insecticides posing threats to non-target invertebrate species and potentially playing a role in the global honeybee colony collapse disorder. An array of automated samplers was

Six high-production-volume neonicotinoids were traced through a municipal wastewater treatment plant (WWTP) and engineered wetland located downstream, in a study motivated by reports on these insecticides posing threats to non-target invertebrate species and potentially playing a role in the global honeybee colony collapse disorder. An array of automated samplers was deployed in a five-day monitoring campaign and resultant flow-weighted samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using the isotope dilution method. Concentrations in WWTP influent and effluent were 54.7 ± 2.9 and 48.6 ± 2.7 ng/L for imidacloprid, respectively, and 3.7 ± 0.3 and 1.8 ± 0.1 ng/L for acetamiprid, respectively. A mass balance over the WWTP showed no (p=0.09, CI = 95%) removal of imidacloprid, and 56 ± 6% aqueous removal of acetamiprid. In the constructed wetland downstream, a lack of removal was noted for both imidacloprid (from 54.4 ± 3.4 ng/L to 49.9 ± 14.6 ng/L) and acetamiprid (from 2.00 ± 0.03 ng/L to 2.30 ± 0.21 ng/L). Clothianidin was detected only inconsistently in the WWTP and wetland (>2 to 288 ng/L; 60% detection frequency), whereas thiamethoxam (<10 ng/L), thiacloprid (<2 ng/L), and dinotefuran (<180 ng/L) were not detected at all. Thus, imidacloprid and acetamiprid were identified as recalcitrant sewage constituents (estimated U.S. WWTP discharge of 1920- 4780 kg/y) that persist during conventional wastewater treatment to enter U.S. surface waters at potentially harmful concentrations.
ContributorsSadaria, Akash Mahendra (Author) / Halden, Rolf (Thesis advisor) / Fox, Peter (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2015
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014