Matching Items (13)
Filtering by

Clear all filters

131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The Colorado River is the lifeblood for seven Basin States including Colorado, Utah, Wyoming, New Mexico, Arizona, California and Nevada. This water source aided westward expansion and allowed the arid Southwest to grow. Today, the river is over-allocated resulting in reduced flows. This could lead to water challenges in Arizona

The Colorado River is the lifeblood for seven Basin States including Colorado, Utah, Wyoming, New Mexico, Arizona, California and Nevada. This water source aided westward expansion and allowed the arid Southwest to grow. Today, the river is over-allocated resulting in reduced flows. This could lead to water challenges in Arizona and the other Basin states. This river is the single largest entity from which Arizona receives water. Despite this, Arizona is still better situated for water cutbacks than other states like California. Arizona has more than nine million acre-feet of banked underground water and access to other water sources including the Salt and Verde rivers. Government officials are making decisions now that will affect water usage in Arizona for decades and generations to come. Digital media, such as iPad magazines are a good way to reach this technologically savvy generation and engage them concerning important issues. Designing for digital platforms presents unique opportunities. This platform requires solid content and visually appealing design to attract a Millennial audience born between the years 1981 and 1996, according to Pew Research Center. Digital magazines currently present a small segment of the media market, however this segment is growing exponentially. A study by Pew Research Center reports that this slice of the population is interested in consuming the news and emerging technologies such as digital magazines. These are good ways to reach and interest a digitally engaged readership. Reaching this age group is important because the Millennial generation will need to determine the future of the Colorado River and water use in Arizona. To ensure the future of water in the West, this generation needs to "learn about the reality of our water supply, what our real water challenges are and then get engaged and have a voice in what we do about our water planning for the future" (Porter, 2015). DISCLAIMER: The digital magazine was created in InDesign with interactive PDFs, which are best viewed on tablets. Screenshots of the magazine are included to demonstrate the magazine.
ContributorsPrice, Mallory Jeanne (Author) / Matera, Fran (Thesis director) / Hill, Retha (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136089-Thumbnail Image.png
Description
As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix

As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix and Tucson, Arizona over the time period from 1980-2010. By analyzing gallons per capita per day (GPCD) trends for each city in the context of population growth, drought, and major state and local policies over the twenty year period, reasons for declines in per capita water demand were explored. Despite differences in their available water sources and political cultures, both the City of Phoenix and the City of Tucson have successfully reduced their per capita water consumption levels between 1980 and 2010. However, this study suggests that each city's measured success at reducing GPCD has been more a result of external events (supply augmentation, drought, and differing development trends) rather than conservation and demand reduction regulations adopted under the auspices of the Groundwater Management Act.
ContributorsSnyder, Rachel Claire (Author) / Larson, Kelli (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136120-Thumbnail Image.png
Description
I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed

I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed a system of products that improves the user experiences surrounding water. The result is IOW, an intelligent 3-product system that aims to make your water needs & wants smarter & less wasteful.
ContributorsShappee, Christian Kyle (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
133693-Thumbnail Image.png
Description
Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish

Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish water recovery was done to assess its efficiency and practicality for real world application. Results from modeling conveyed accuracy to reported parameter values from literature as well as strong dependence of performance on input parameters such as temperature. Experimentation results showed improved performance in flux by 34%-42% with radiative effect and then additional performance improvement (9%-33%) with the photothermal effect from carbon black application. Future work will include improvements to the model to include scaling propensity and energy consumption as well as continued experimentation to assess quality of pervaporation in water recovery.
ContributorsDurbin, Mitchell (Co-author) / Rivers, Frederick (Co-author) / Lind Thomas, MaryLaura (Thesis director) / Durgan, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135913-Thumbnail Image.png
Description
Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem

Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem of drought in the Sonoran Desert was developed, piloted, and evaluated. The framework of each lesson combined the core competencies and the 5Es pedagogy (engage, explore, explain, elaborate, and evaluate). Two lessons were successfully piloted in two seventh grade middle-school science classes in Phoenix, Arizona. Topics addressed were the water cycle, types of drought, water systems, and mitigation methods. Evaluation determined a high level of student engagement. Post-pilot teacher questionnaires revealed a high degree of support for inclusion of sustainability education and core competencies addressing drought in future opportunities. It is concluded that lessons in the future can adopt the core competences of sustainability with the support of educators in Arizona.
ContributorsComeaux, Victoria (Co-author) / Harding, Bridget (Co-author) / Larson, Kelli L. (Thesis director) / Frisk Redman, Erin (Committee member) / School of Sustainability (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148376-Thumbnail Image.png
Description

In 2021, Palestine will have been under official Israeli occupation for 54 years. As conflict persists between the two populations, it is becoming increasingly difficult to imagine a peaceful resolution. As international legal bodies have failed to bring an end to the occupation, the Israeli government continues to carry out

In 2021, Palestine will have been under official Israeli occupation for 54 years. As conflict persists between the two populations, it is becoming increasingly difficult to imagine a peaceful resolution. As international legal bodies have failed to bring an end to the occupation, the Israeli government continues to carry out extensive violations of human rights against the Palestinians. One significant consequence of the occupation has been the Palestinians’ lack of access to safe and reliable water, a problem that is continuing to worsen as a result of climate change and years of over-utilization of shared, regional water resources. Since the occupation started, international organizations have not only affirmed the general human right to water but have overseen several peace agreements between Israel and Palestine that have included stipulations on water. Despite these measures, neither water access nor quality has improved and, over time, has worsened. This paper will look at why international law has failed to improve conditions for Palestinians and will outline the implications of the water crisis on a potential solution between Israel and Palestine.

ContributorsTimpany, Grace Louise (Author) / Haglund, LaDawn (Thesis director) / Rothenberg, Daniel (Committee member) / School of Politics and Global Studies (Contributor, Contributor, Contributor) / School of Sustainability (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05