Matching Items (5)
Filtering by

Clear all filters

151347-Thumbnail Image.png
Description
Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require

Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require control, monitoring, and treatment of Pharmaceutical and Personal Care Products by Publicly Owned Treatment Works (POTWs). This study evaluated the potential financial impact this proposed legislation could have on U.S. POTWs using City of Mesa, Arizona as a model POTW. The current laws concerning PPCPs as well as the proposed legislation were described. The proposed federal legislation would create investigational studies about PPCPs. The studies could lead to regulations concerning the control, monitoring, and treatment of PPCPs by POTWs. The potential financial costs of the following strategies were assessed: multiple barriers concept for PPCP control or prevention programs by POTWs, PPCP monitoring of wastewater, and upgrading POTW treatment technology for PPCP removal. Study results found no new wastewater treatment technologies were economically suitable for POTWs, however, community education and programs such as Household Take-back programs could be financially viable.
ContributorsSteffen-Deaton, Mary (Author) / Olson, Larry (Thesis advisor) / Brown, Albert F. (Committee member) / Hristovski, Kiril D. (Committee member) / Arizona State University (Publisher)
Created2012
153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
ContributorsRose, Christy J (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2014
151115-Thumbnail Image.png
Description
The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of occurrence data from Unregulated Contaminant Monitoring Rule (UCMR 2) and

The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of occurrence data from Unregulated Contaminant Monitoring Rule (UCMR 2) and suggests how nitrosamines can be regulated. Currently only total trihalomethanes (THM) and haloacetic acids (HA) are regulated at the federal level. However, California has notification action levels and Massachusetts has guidelines of 10 ng/L for nitrosamine concentration. Nitrosamine data collected under the UCMR 2 were analyzed to assess the occurrence and the effect of disinfectant type and source water type. The data showed that N-nitrosodimethylamine (NDMA) was detected in drinking water at concentrations higher than the minimum reporting level (MRL) of 2 ng/L. Four nitrosamines including N-nitroso-diethylamine (NDEA), N-nitroso-di-n-butylamine (NDBA), N-nitroso-methylethylamine (NMEA) and N-nitroso-pyrrolidine (NPYR) and very low detections. N-nitroso-di-n-propylamine (NDPA) was not detected in the sample analyses. NDMA was primarily detected in public water systems using chloramines other than chlorine.
ContributorsBrown, Alicia (Author) / Olson, Larry (Thesis advisor) / Peterson, Danny (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2012
155718-Thumbnail Image.png
Description
This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due

This dissertation is focused on environmental releases from U.S. wastewater infrastructure of recently introduced, mass-produced insecticides, namely neonicotinoids as well as fipronil and its major degradates (sulfone, sulfide, amide, and desulfinyl derivatives), jointly known as fiproles. Both groups of compounds recently have caught the attention of regulatory agencies worldwide due to their toxic effects on pollinators and on aquatic invertebrates at very low, part-per-trillion levels (Chapter 1). Mass balance studies conducted for 13 U.S. wastewater treatment plants (WWTPs) showed ubiquitous occurrence (3-666 ng/L) and persistence of neonicotinoids (Chapter 2). For the years 2001 through 2016, a longitudinal nationwide study was conducted on the occurrence of fiproles, via analysis of sludge as well as raw and treated wastewater samples. Sludge analysis revealed ubiquitous fiprole occurrence since 2001 (0.2-385 µg/kg dry weight) and a significant increase (2.4±0.3-fold; p<0.005) to elevated levels found both in 2006/7 and 2015/6. This study established a marked persistence of fiproles during both wastewater and sludge treatment, while also identifying non-agricultural uses as a major source of fiprole loading to wastewater (Chapter 3). Eight WWTPs were monitored in Northern California to assess pesticide inputs into San Francisco Bay from wastewater discharge. Per-capita-contaminant-loading calculations identified flea and tick control agents for use on pets as a previously underappreciated source term dominating the mass loading of insecticides to WWTPs in sewage and to the Bay in treated wastewater (Chapter 4). A nationwide assessment of fipronil emissions revealed that pet products, while representing only 22±7% of total fipronil usage (2011-2015), accounted for 86±5% of the mass loading to U.S. surface waters (Chapter 5). In summary, the root cause for considerable annual discharges into U.S. surface waters of the neonicotinoid imidacloprid (3,700-5,500 kg/y) and of fipronil related compounds (1,600-2,400 kg/y) is domestic rather than agricultural insecticide use. Reclaimed effluent from U.S. WWTPs contained insecticide levels that exceed toxicity benchmarks for sensitive aquatic invertebrates in 83% of cases for imidacloprid and in 67% of cases for fipronil. Recommendations are provided on how to limit toxic inputs in the future.
ContributorsSadaria, Akash Mahendra (Author) / Halden, Rolf (Thesis advisor) / Fraser, Matthew (Committee member) / Perreault, Francois (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2017
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019