Matching Items (13)
Filtering by

Clear all filters

131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136089-Thumbnail Image.png
Description
As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix

As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix and Tucson, Arizona over the time period from 1980-2010. By analyzing gallons per capita per day (GPCD) trends for each city in the context of population growth, drought, and major state and local policies over the twenty year period, reasons for declines in per capita water demand were explored. Despite differences in their available water sources and political cultures, both the City of Phoenix and the City of Tucson have successfully reduced their per capita water consumption levels between 1980 and 2010. However, this study suggests that each city's measured success at reducing GPCD has been more a result of external events (supply augmentation, drought, and differing development trends) rather than conservation and demand reduction regulations adopted under the auspices of the Groundwater Management Act.
ContributorsSnyder, Rachel Claire (Author) / Larson, Kelli (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136215-Thumbnail Image.png
Description
Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field

Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field methods. The children were asked to draw two pieces of art: one showing how they saw water being used in their neighborhood today and one showing how they imagined water would be used in their neighborhood 100 years from now. Using visual content analysis, the drawings were coded for the presence of vegetation, scarcity, pollution, commercial sources, existing technology, technological innovation, domestic use, and natural sources of water. The study finds that (1) students' drawings of the future contain significantly more pollution and scarcity than those in the present, and (2) both boys and girls depict existing technology significantly more often in the drawings of today than the drawings of the future. Additionally, (1) boys are significantly more likely than girls to draw more negative depictions of water (i.e., pollution and scarcity), and (2) boys are significantly more likely than girls to depict the natural world (i.e., natural sources of water). Through examining gendered perceptions and future expectations of climate change and water issues, this study explores possible areas of intervention in environmental education in a developing country.
ContributorsMcAtee, Hannah Lee (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134775-Thumbnail Image.png
Description
In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival

In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival data, participant- observation, focal follows with water distributors that serve homeless populations, phone and internet surveys with social service providers, and expert interviews with 14 local service providers. We analyzed this data using methods for thematic coding and geospatial analysis. We find that the sources of water and geographic availability vary across the economic sectors of the population and that they become more unconventional and more difficult to access with further isolation. We conclude that many persons who are experience homelessness have inconsistent and unreliable access to water for hydrating, maintaining hygiene, cooking and cleaning for reasons that are largely due to geographic inaccessibility.
ContributorsWarpinski, Chloe Larue (Author) / Wutich, Amber (Thesis director) / Whelan, Mary (Committee member) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133693-Thumbnail Image.png
Description
Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish

Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish water recovery was done to assess its efficiency and practicality for real world application. Results from modeling conveyed accuracy to reported parameter values from literature as well as strong dependence of performance on input parameters such as temperature. Experimentation results showed improved performance in flux by 34%-42% with radiative effect and then additional performance improvement (9%-33%) with the photothermal effect from carbon black application. Future work will include improvements to the model to include scaling propensity and energy consumption as well as continued experimentation to assess quality of pervaporation in water recovery.
ContributorsDurbin, Mitchell (Co-author) / Rivers, Frederick (Co-author) / Lind Thomas, MaryLaura (Thesis director) / Durgan, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137714-Thumbnail Image.png
Description
The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of

The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of water today and in the future were collected. The 9-11 year olds were asked to draw pictures of 1) how they saw water being used in their neighborhood today (T1), and 2) how they imagined water would be used in their neighborhood 100 years from now (T2). The artwork was collected and coded for nine different themes, including: vegetation, scarcity, pollution, commercial sources of water, existing technology, technology innovation, recreational use, domestic use, and natural sources of water. Statistically significant differences were found between boys and girls for vegetation, technology and domestic use themes. This project allows for a look into how climate change and water insecurity is viewed by younger generations and gives a voice to children so that they may share their outlooks on this vital resource.
ContributorsVins, Holly Elizabeth (Author) / Wutich, Amber (Thesis director) / Newland, Judy (Committee member) / Beresford, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate, and to help bring safe water to everyone.

ContributorsFilipek, Marina (Co-author) / Sadiasa, Aira (Co-author) / Reitzel, Gage (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Finance (Contributor) / School of International Letters and Cultures (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05