Matching Items (14)
Filtering by

Clear all filters

136512-Thumbnail Image.png
Description
The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human

The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human Evolution and Social Change during the summer of 2013. The Global Ethnohydrology Study is a transdisciplinary multi-year research initiative that examines the range of variation in local ecological knowledge of water issues, also known as "ethnohydrology." Participants were asked about their willingness, level of disgust, and concern with using treated wastewater for various daily activities. Additionally, they were asked to draw schematic representations of how wastewater should be treated to become drinkable again. Using visual content analysis, the drawings were coded for a variety of treatment levels and specific treatment processes. Conclusions about the perceived health implications from wastewater reuse that can stem from drinking treated wastewater were made. The relationship between humans and wastewater is one that has many direct social and health impacts on communities at large. In reaction to global limitations of freshwater, wastewater serves as a valuable resource to tap into. This research examines the cross-cultural public health concerns about treated wastewater in order to draw conclusions that can aid in strategic implementation of advocacy and public education about wastewater reuse.
ContributorsPatel, Sarah Shakir (Author) / Wutich, Amber (Thesis director) / Rice, Jacelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137714-Thumbnail Image.png
Description
The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of

The Science of Water Art project is a collaborative work that brings together professionals, community members, college students and children to think about the role that water plays in each of our lives. Using a sample of 4th grade classrooms in Maricopa County, over 3000 drawings of children's perception of water today and in the future were collected. The 9-11 year olds were asked to draw pictures of 1) how they saw water being used in their neighborhood today (T1), and 2) how they imagined water would be used in their neighborhood 100 years from now (T2). The artwork was collected and coded for nine different themes, including: vegetation, scarcity, pollution, commercial sources of water, existing technology, technology innovation, recreational use, domestic use, and natural sources of water. Statistically significant differences were found between boys and girls for vegetation, technology and domestic use themes. This project allows for a look into how climate change and water insecurity is viewed by younger generations and gives a voice to children so that they may share their outlooks on this vital resource.
ContributorsVins, Holly Elizabeth (Author) / Wutich, Amber (Thesis director) / Newland, Judy (Committee member) / Beresford, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132752-Thumbnail Image.png
Description
Research has been conducted analyzing factors that affect mental health in regions that suffer from water insecurity and water scarcity. Amber Wutich and Alexandra Brewis (2019) explain the effects that water scarcity has on mental health and how chronic worry can trigger depression, stress, anxiety and in extreme cases this

Research has been conducted analyzing factors that affect mental health in regions that suffer from water insecurity and water scarcity. Amber Wutich and Alexandra Brewis (2019) explain the effects that water scarcity has on mental health and how chronic worry can trigger depression, stress, anxiety and in extreme cases this can lead to suicidal thoughts. Bina Agarwal (2000) analyzes gender roles in relation to water insecurity where women express more signs of anxiety and worry due to the limited options they have when seeking water outside their household. There are limited studies done on water insecurity at a household level which limit an understanding of possible coping mechanisms along with additional factors that affect mental health. In this study, surveys are conducted in the city of San Juan Del Rio, Queretaro in Mexico where residents have been affected by massive flooding’s. Additionally, residents in Mexico not only suffer from water scarcity but also from poor water infrastructure, constant water outages, shortages, and contaminated water supply. Respondents answers (n=23) regarding the amount of worry, household size, being head of household, and gender was used to conduct paired sample statistical tests where associations were determined. Associations relating to the amount of worry resulted in the idea that residents in San Juan Del Rio because they consistently struggle with water shortages, have developed a coping strategy to deal with water outages and therefore, show fewer signs of worry when faced with a household water situation. In consideration, surveys conducted in surrounding towns and in a rural setting can provide additional information regarding how poverty is related to mental health and water scarcity along with a deeper understanding of possible coping strategies at a household level.
ContributorsRamirez Arellanes, Andrea (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133693-Thumbnail Image.png
Description
Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish

Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish water recovery was done to assess its efficiency and practicality for real world application. Results from modeling conveyed accuracy to reported parameter values from literature as well as strong dependence of performance on input parameters such as temperature. Experimentation results showed improved performance in flux by 34%-42% with radiative effect and then additional performance improvement (9%-33%) with the photothermal effect from carbon black application. Future work will include improvements to the model to include scaling propensity and energy consumption as well as continued experimentation to assess quality of pervaporation in water recovery.
ContributorsDurbin, Mitchell (Co-author) / Rivers, Frederick (Co-author) / Lind Thomas, MaryLaura (Thesis director) / Durgan, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134590-Thumbnail Image.png
Description
The Culture, Health, and Environment Lab (CHEL) at Arizona State University uses anthropological methods and field-based studies to research how cultural knowledge may be used to help understand and respond to contemporary environmental and health issues—primarily the global challenges of water insecurity and obesity. In their efforts to research water

The Culture, Health, and Environment Lab (CHEL) at Arizona State University uses anthropological methods and field-based studies to research how cultural knowledge may be used to help understand and respond to contemporary environmental and health issues—primarily the global challenges of water insecurity and obesity. In their efforts to research water insecurity and it implications, CHEL has been working on studying water insecurity through the Global Ethnohydrology Study (GES). The Global Ethnohydrology study examines local knowledge and perceptions of water issues, using transdisciplinary methods in a multi-year and cross-country program. In the 2015-2016 study, the GES examined water, hygiene norms, and hygiene stigma. It sought to investigate how hygiene norms are impacted by the level of water security, examining if water-poor communities have laxer laxer or more accommodating hygiene norms. This paper will explore the development of the codebook for this study, following the process in which the qualitative data from the GES 2015 was organized through a series of codes so that it may later be analyzed.
ContributorsPfeiffer, Ainsley Josephine (Author) / Wutich, Amber (Thesis director) / Schuster, Roseanne (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134775-Thumbnail Image.png
Description
In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival

In this project we examine the geographical availability of water resources for persons experiencing homelessness in Phoenix, Arizona, U.S.A. Persons experiencing homelessness spend a significant portion of their time outdoors and as such have a higher risk of dehydration, heat-related illness, and heat stress. Our data was collected using archival data, participant- observation, focal follows with water distributors that serve homeless populations, phone and internet surveys with social service providers, and expert interviews with 14 local service providers. We analyzed this data using methods for thematic coding and geospatial analysis. We find that the sources of water and geographic availability vary across the economic sectors of the population and that they become more unconventional and more difficult to access with further isolation. We conclude that many persons who are experience homelessness have inconsistent and unreliable access to water for hydrating, maintaining hygiene, cooking and cleaning for reasons that are largely due to geographic inaccessibility.
ContributorsWarpinski, Chloe Larue (Author) / Wutich, Amber (Thesis director) / Whelan, Mary (Committee member) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12