Matching Items (9)
Filtering by

Clear all filters

136215-Thumbnail Image.png
Description
Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field

Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field methods. The children were asked to draw two pieces of art: one showing how they saw water being used in their neighborhood today and one showing how they imagined water would be used in their neighborhood 100 years from now. Using visual content analysis, the drawings were coded for the presence of vegetation, scarcity, pollution, commercial sources, existing technology, technological innovation, domestic use, and natural sources of water. The study finds that (1) students' drawings of the future contain significantly more pollution and scarcity than those in the present, and (2) both boys and girls depict existing technology significantly more often in the drawings of today than the drawings of the future. Additionally, (1) boys are significantly more likely than girls to draw more negative depictions of water (i.e., pollution and scarcity), and (2) boys are significantly more likely than girls to depict the natural world (i.e., natural sources of water). Through examining gendered perceptions and future expectations of climate change and water issues, this study explores possible areas of intervention in environmental education in a developing country.
ContributorsMcAtee, Hannah Lee (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
132804-Thumbnail Image.png
Description
A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.
ContributorsKhuller, Aditya Rai (Author) / Christensen, Philip (Thesis director) / Harrison, Tanya (Committee member) / Diniega, Serina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134537-Thumbnail Image.png
Description
Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However,

Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However, rampant groundwater pumping and over-allocation of these water supplies based on unprecedented, high flows of the Colorado River have created challenges for water managers to ensure adequate water supply for the future. Combined with the current 17-year drought and the warming and drying projections of climate change, the future of water availability in Phoenix will depend on the strength of water management laws, educating the public, developing a strong sense of community, and using development to manage population and support sustainability. As the prevalence of agriculture declines in and around Phoenix, a substantial amount of water is saved. Instead of storing this saved water, Phoenix is using it to support further development. Despite uncertainty regarding the abundant and continuous availability of Phoenix's water resources, development has hardly slowed and barely shifted directions to support sustainability. Phoenix was made to grow until it legally cannot expand anymore. In order to develop solutions, we must first understand the push for development in water-stressed Phoenix, Arizona.
ContributorsVasquez, Brianna Nicole (Author) / Heimsath, Arjun (Thesis director) / Whipple, Kelin (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir

Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir Observatory in Baja, CA, MX with high sensitivity in order to study these events at a high redshift. Due to how quickly GRBs occur, it is essential to develop an image reduction pipeline that can quickly and accurately detect these events. Using existing image reduction software from Coatli, which was programmed and optimized for speed using python, numerous time trials were performed in order to determine if the pipeline meets the time requirements with various factors being adjusted. The goal of this experiment is for the telescope to respond to, capture, and reduce the images in under 3 minutes. It was determined that the reduction was optimized when the number of files to be reduced was set equal to 16 or higher by changing the batch number and the blank sky subtraction function was performed. As for the number of exposures, one can take up to four 30 second exposures or twenty 5 second exposures and reduce them in under 3 minutes.
ContributorsHeiligenstein, Wren (Author) / Butler, Nathaniel (Thesis director) / Jansen, Rolf (Committee member) / Dimitrova, Tzvetelina (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05
131302-Thumbnail Image.png
Description
This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space travel. By utilizing technology that has already been used in space travel and implementing the use of technology that is successful on Earth, humans will be able to live on Mars successfully.
ContributorsWebber, Kaitlin Brooke (Author) / Culbertson, Robert (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132747-Thumbnail Image.png
Description
This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.
ContributorsRobinson, Jenna (Author) / Desch, Steven (Thesis director) / Hervig, Richard (Committee member) / School of Earth and Space Exploration (Contributor) / School for the Future of Innovation in Society (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132752-Thumbnail Image.png
Description
Research has been conducted analyzing factors that affect mental health in regions that suffer from water insecurity and water scarcity. Amber Wutich and Alexandra Brewis (2019) explain the effects that water scarcity has on mental health and how chronic worry can trigger depression, stress, anxiety and in extreme cases this

Research has been conducted analyzing factors that affect mental health in regions that suffer from water insecurity and water scarcity. Amber Wutich and Alexandra Brewis (2019) explain the effects that water scarcity has on mental health and how chronic worry can trigger depression, stress, anxiety and in extreme cases this can lead to suicidal thoughts. Bina Agarwal (2000) analyzes gender roles in relation to water insecurity where women express more signs of anxiety and worry due to the limited options they have when seeking water outside their household. There are limited studies done on water insecurity at a household level which limit an understanding of possible coping mechanisms along with additional factors that affect mental health. In this study, surveys are conducted in the city of San Juan Del Rio, Queretaro in Mexico where residents have been affected by massive flooding’s. Additionally, residents in Mexico not only suffer from water scarcity but also from poor water infrastructure, constant water outages, shortages, and contaminated water supply. Respondents answers (n=23) regarding the amount of worry, household size, being head of household, and gender was used to conduct paired sample statistical tests where associations were determined. Associations relating to the amount of worry resulted in the idea that residents in San Juan Del Rio because they consistently struggle with water shortages, have developed a coping strategy to deal with water outages and therefore, show fewer signs of worry when faced with a household water situation. In consideration, surveys conducted in surrounding towns and in a rural setting can provide additional information regarding how poverty is related to mental health and water scarcity along with a deeper understanding of possible coping strategies at a household level.
ContributorsRamirez Arellanes, Andrea (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132642-Thumbnail Image.png
Description
Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations,

Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations, have common landscapes they are responsible for up-keeping and irrigating. 208 neighborhood communities exist within the City of Tempe. Each year the city provides $30,000 in grant funding to these 208 neighborhoods to implement water conservation projects. This thesis focuses on ten neighborhoods who had applied and were granted funding to implement a conservation project between the years 2011 and 2016. My findings showed that this program has not been effective in reducing water consumption, wither due to the lack of implementation or the small-scale of the projects. From my research and synthesis, I suggest a layer of accountability be added to the program to ensure projects are effective and participants are implementing their projects and that the program is effective overall. This study provides the City of Tempe with relevant and viable information to aid management of water consumption and conservation within neighborhoods.
ContributorsApillanes, Sierra Caitlyn (Author) / Larson, Kelli (Thesis director) / Bomar, Melissa (Committee member) / School of Sustainability (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05