Matching Items (4)
Filtering by

Clear all filters

153910-Thumbnail Image.png
Description
Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has

Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has emerged as an alternative to distraction and has the potential to be beneficial. However, considering the fact that automotive environment is dynamic and noisy in nature, distraction may not arise from the manual interaction, but due to the cognitive load. Hence, speech recognition certainly cannot be a reliable mode of communication.

The thesis is focused on proposing a simultaneous multimodal approach for designing interface between driver and vehicle with a goal to enable the driver to be more attentive to the driving tasks and spend less time fiddling with distractive tasks. By analyzing the human-human multimodal interaction techniques, new modes have been identified and experimented, especially suitable for the automotive context. The identified modes are touch, speech, graphics, voice-tip and text-tip. The multiple modes are intended to work collectively to make the interaction more intuitive and natural. In order to obtain a minimalist user-centered design for the center stack, various design principles such as 80/20 rule, contour bias, affordance, flexibility-usability trade-off etc. have been implemented on the prototypes. The prototype was developed using the Dragon software development kit on android platform for speech recognition.

In the present study, the driver behavior was investigated in an experiment conducted on the DriveSafety driving simulator DS-600s. Twelve volunteers drove the simulator under two conditions: (1) accessing the center stack applications using touch only and (2) accessing the applications using speech with offered text-tip. The duration for which user looked away from the road (eyes-off-road) was measured manually for each scenario. Comparison of results proved that eyes-off-road time is less for the second scenario. The minimalist design with 8-10 icons per screen proved to be effective as all the readings were within the driver distraction recommendations (eyes-off-road time < 2sec per screen) defined by NHTSA.
ContributorsMittal, Richa (Author) / Gaffar, Ashraf (Thesis advisor) / Femiani, John (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2015
157284-Thumbnail Image.png
Description
Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research

Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research it was defined as off task thoughts that occur due to the task not requiring full cognitive capacity. Drivers were asked to operate a driving simulator and follow audio turn by turn directions while experiencing each of three cell phone notification levels: Control (no texts), Airplane (texts with no notifications), and Ringer (audio notifications). Measures of Brake Reaction Time, Headway Variability, and Average Speed were used to operationalize driver distraction. Drivers experienced higher Brake Reaction Time and Headway Variability with a lower Average Speed in both experimental conditions when compared to the Control Condition. This is consistent with previous research in the field of implying a distracted state. Oculomotor movement was measured as the percent time the participant was looking at the road. There was no significant difference between the conditions in this measure. The results of this research indicate that not, while not interacting with a cell phone, no audio notification is required to induce a state of distraction. This phenomenon was unable to be linked to mind-wandering.
ContributorsRadina, Earl (Author) / Gray, Robert (Thesis advisor) / Chiou, Erin (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017