Matching Items (17)
Filtering by

Clear all filters

134065-Thumbnail Image.png
Description
The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on

The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on vaccination and whether or not herd immunity will continue in the United States for different diseases. To understand perceptions of vaccine risks and effectiveness among young adults in the U.S., this study describes Arizona State University students' perceptions of the harms and benefits of vaccines. A preliminary free list (n=30) identified what vaccines ASU college students were most likely to recall spontaneously. The six vaccines most commonly mentioned by ASU students were: influenza (flu), chickenpox, HPV, polio, MMR, and smallpox. Using these top six vaccines, we then developed a second survey about the knowledge and perceptions of each of these vaccines and vaccines as a whole. We found that students generally perceived vaccines as safe and important to their health, but they maintained an overall lack of understanding of how vaccines work and what they protect against. While this study is only a preliminary investigation into the perceptions of ASU college students on six commonly mentioned vaccines, this could lead to investigations on how to educate and promote the usage of vaccines to college students.
ContributorsGilson, Jacob (Co-author) / Sutton, Carly (Co-author) / Hruschka, Daniel (Thesis director) / Ruth, Alissa (Committee member) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135335-Thumbnail Image.png
Description
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
ContributorsMiller, Charles (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Carmen, Joshua (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
165931-Thumbnail Image.png
Description

The COVID 19 pandemic has highlighted the necessity of accurately and simply relying scientific discovery and information to the public. Among scientists, the practice is to reduce jargon, engage the audience through storytelling, and include enough detail to give a broad understanding of a narrow topic. Conflict between journalists and

The COVID 19 pandemic has highlighted the necessity of accurately and simply relying scientific discovery and information to the public. Among scientists, the practice is to reduce jargon, engage the audience through storytelling, and include enough detail to give a broad understanding of a narrow topic. Conflict between journalists and scientists leads to a creation of a different narrative for the general public. The news site CNN.com was searched with the google archive function by year for articles that included the keyword vaccine. Articles were sorted into categories of main focus such as political, cultural and scientific or mixed. Results were analyzed and conclusions made about the amount of content in each category for the kind of narrative being written about vaccines, with most years having most articles in the political category. Possible effectiveness of mixed categories were discussed and areas future research identified.

ContributorsFreeman, Lindsay (Author) / Sellner, Erin (Thesis director) / Briggs, Georgette (Committee member) / Barrett, The Honors College (Contributor) / Hugh Downs School of Human Communication (Contributor) / School of Life Sciences (Contributor)
Created2022-05
166031-Thumbnail Image.png
Description

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with peak protein accumulation and minimal necrosis achieved on day 4 post-infiltration. In comparing various purification strategies, it was determined that a 20% ammonium sulfate precipitation is an effective and efficient method for removing plant proteins and purifying the recombinant VLPs of interest. If further purification is required, this may be achieved through ultracentrifugation. VLPs are a useful platform for a variety of biomedical applications and developing the technology to efficiently produce VLPs in the plant expression system is of critical importance.

ContributorsFleming, Claire (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

Memory CD8+ T cells protect against secondary viral infections. They develop and maintain exclusively in circulation (e.g. central memory - Tcm) or are excluded from re-circulation (resident memory - Trm). The extracellular ATP receptor P2RX7 promotes both Tcm and Trm generation. High (P2RX7hi) P2RX7-expressing early effector cells show survival, memory

Memory CD8+ T cells protect against secondary viral infections. They develop and maintain exclusively in circulation (e.g. central memory - Tcm) or are excluded from re-circulation (resident memory - Trm). The extracellular ATP receptor P2RX7 promotes both Tcm and Trm generation. High (P2RX7hi) P2RX7-expressing early effector cells show survival, memory and pluripotency genes. Conversely, many terminal effector (TE) and apoptosis genes are upregulated in low (P2RX7lo) P2RX7-expressing cells. Among these genes is the zinc-finger transcriptional repressor Zeb2, which promotes TE differentiation at the expense of the memory cell pool. Given that Zeb2 was higher in P2RX7lo early effector cells, we postulated that Zeb2 ablation would allow P2RX7-deficient CD8+ T cells to skew towards memory subsets. To test this, we used RNP-based CRISPR-Cas9 to knockout Zeb2 in wild type or P2RX7-deficient P14 cells. At the memory timepoint, Zeb2 ablation led to a rescue of the ability of P2RX7-deficient cells to differentiate into the CD62L+ Tcm and CD69hiCD103hi Trm subsets, as well as increase the population of each. Our data suggest that P2RX7 imprints a pro-memory signature that is, to some extent, dependent on the negative regulation of Zeb2.

ContributorsVan Dijk, Sarah (Author) / Holechek, Susan (Thesis director) / Borges da Silvs, Henrique (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2021-12
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05