Matching Items (5)
Filtering by

Clear all filters

133936-Thumbnail Image.png
Description
The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove one copy of the S6K1 gene in 3xTg-AD mice by

The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove one copy of the S6K1 gene in 3xTg-AD mice by breeding them with S6K1 knockout mice (S6K1+/-). In previous studies, we have seen that reducing S6K1 levels in 3xTg-AD mice improved spatial memory and synaptic plasticity which was associated with reduced A and tau pathology. Here, we used a multiparametric MRI to assess volumetric and blood flow changes in the brain of 20-month-old 3xTg-AD mice. We found that 3xTg-AD/S6K1+/- mice had higher blood flow and cortical volume compared to 3xTg-AD mice. However, we saw no significant differences between 3xTg-AD mice and NonTg mice. We further found A levels and plaque numbers were significantly lower in 3xTg-AD/S6K1+/- mice compared to 3xTg-AD mice. This reduction in plaques could account for the improvement in blood flow in 3xTg-AD/S6K1+/- mice. To try to understand the reason behind the increase in cortical volume in the 3xTg-AD/S6K1+/- when compared to the 3xTg-AD, we measured markers of synaptic density, PSD95, and synaptophysin. We found that PSD95 levels were not different between the four groups. However, synaptophysin levels were significantly lower in 3xTg-AD mice compared to NonTg levels and returned to baseline levels in 3xTg-AD mice lacking one copy of the S6K1 gene. This difference in synaptophysin could explain, at least in part, the difference in volume between the four groups analyzed. Overall, this represents the first evidence showing that reducing mTOR signaling improves blood flow and cortical volume in a mouse model of AD.
ContributorsShukla, Prakriti (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Jankowsky, Joanna (Committee member) / School of Molecular Sciences (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133956-Thumbnail Image.png
Description
Neuroinflammation is mediated by activated microglia, the chief immune response of the central nervous system. Mitochondrial 18kDa translocator protein (TSPO) is upregulated in activated microglia and has been used in PET scans to analyze peripheral and central inflammation with TSPO radioligand [18F]DPA-714. To test the hypothesis that TSPO is involved

Neuroinflammation is mediated by activated microglia, the chief immune response of the central nervous system. Mitochondrial 18kDa translocator protein (TSPO) is upregulated in activated microglia and has been used in PET scans to analyze peripheral and central inflammation with TSPO radioligand [18F]DPA-714. To test the hypothesis that TSPO is involved in microglial mediation of inflammatory responses to Aβ and other Alzheimer’s pathological elements, TSPO expression was evaluated in relation to microglia specific markers (IBA1 and LN3 antibodies) and markers for AD pathology, Aβ (6E10 antibody) and hyperphosphorylated tau (AT8 antibody). To test that TSPO is involved in inflammatory pathways, HEK cells transfected with TSPO plasmids were assessed for oxidative stress in response to Alzheimer’s disease pathogenic agents, β Amyloid (Aβ), and Parkinson’s disease α-synuclein (α-syn).

Fluorescence microscopy of TSPO transfected HEK cell cultures labeled with Carboxy-H2DCFDA and treated with Beta Amyloid (Aβ) and α-synuclein (α-syn) resulted in DAPI fluorescing Human Embryonic Kidney (HEK) nuclei in blue and Green Fluorescent Protein (GFP) fluorescing reactive oxygen species (ROS) or oxidative stress in cell cytoplasm in green. Preliminary study suggests TSPO transfected cells may be used to test oxidative stress with disease pathological elements (Aβ and α-synuclein). In IHC, TSPO immunoreactivity was observed in IBA1 and LN3 marked microglia with varying degrees of expression. Beaded structures were also observed with TSPO immunoreactivities, possibly representing microglia processes. TSPO immunoreactivity was observed in and surrounding amyloid plaques and p-tau immunoreactive neurites. This demonstrates that TSPO is predominantly expressed in microglia and are closely associated with Alzheimer’s disease pathological elements, suggesting involvement of TSPO-expressing microglia in neurodegenerative processes.
ContributorsWu, Michael (Author) / Lue, Lih-Fen (Thesis director) / Washo-Krupps, Delon (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133709-Thumbnail Image.png
Description
A prominent aspect of Alzheimer’s disease (AD) is the presence of neuroinflammation is mediated by the activation of microglial cells, which are the immune cells in the central nervous system (CNS) that express an array of cytokines that may promote an inflammatory response. The main cytokines produced are: tumor

A prominent aspect of Alzheimer’s disease (AD) is the presence of neuroinflammation is mediated by the activation of microglial cells, which are the immune cells in the central nervous system (CNS) that express an array of cytokines that may promote an inflammatory response. The main cytokines produced are: tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The presence of these cytokines in the CNS may lead to neuronal death, to the production of toxic chemicals (such as nitric oxide), and to the generation of amyloid beta (a major pathological feature of AD). Previous studies have shown that modulation of the inflammatory response in the nervous system can potentially prevent and/or delay the onset of neurodegenerative diseases such as AD. Therefore, it is important to identify the process that induces CNS inflammation. For example, mitochondrial lysates have been found to produce an inflammatory response due to their ability to stimulate TNF-, Aβ, and APP mRNA [10]. Interestingly, extracellular mitochondria have been detected in the brain due to neurons degrading old mitochondria extracellularly. Therefore, we set out to study the effect of whole mitochondria isolated by differential centrifugation from human neuroblastoma cells (BE(2)-M17 cells) on the neuroinflammatory response in a human microglia model (THP-1 cells). Despite our best efforts, in the end it was unclear whether the mitochondrial fraction or other cellular components induced the inflammatory response we observed. Thus, further work with an improved mitochondrial isolation method should be carried out to address this issue.
ContributorsStokes, Laura Jean (Author) / DeCourt, Boris (Thesis director) / Sweazea, Karen (Committee member) / Gonzales, Rayna (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the formation of neurofibrillary tangles (NFTs) and result in neurodegeneration, there

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the formation of neurofibrillary tangles (NFTs) and result in neurodegeneration, there are many theories that attempt to define the causes of AD. This paper investigates the amyloid and tau theories in more detail, including how these proteins can spread in the brain. It will also take a look into other potential theories that could contribute to AD symptoms such as vascular issues or neuroinflammation. Frontotemporal dementia (FTD) is another form of dementia, albeit much rarer than AD, that is typically characterized by symptoms that follow the opposite progression of AD: behavior and judgement are affected before memory. In addition, FTD is closely related to amyotrophic lateral sclerosis (ALS), a movement disorder that is caused by a loss of motor neurons that results in loss of muscle control. This paper will also examine how FTD and ALS are related, as well as theories behind the potential causes of these disorders. Finally, this paper will examine a patient who exhibits signs and symptoms of both disorders to attempt to determine the potential diagnosis.

ContributorsYeturu, Sree Neha (Author) / Velazquez, Ramon (Thesis director) / Duane, Drake (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132025-Thumbnail Image.png
Description
As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that

As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that is proteolytically cleaved from the type I transmembrane glycolytic amyloid precursor protein (APP). APP is highly conserved across species, suggesting the importance of APP in healthy brain functioning. However, when APP is cleaved through the amyloidogenic pathway it produces amyloid beta. The trafficking of APP within neurons has been a new endeavor for neurodegenerative disease research, as reduced retrograde trafficking of APP has been hypothesized to increase the likelihood of the amyloidogenic cleavage of APP, resulting in increased amyloid beta presence (Ye et al., 2017). The findings of this study suggest that transport of APP within neurons is significantly inhibited by increased extracellular glutamate concentration. The addition of human primary astrocytes within a human neuron co-culture allowed for significantly increased retrograde transport of APP within neurons, even within high glutamate conditions. These finding enhance the current field of research regarding astrocytes neuroprotective role within the brain, but bring attention to the role that astrocytes have upon regulation of the axonal transport of proteins within neurons.
ContributorsKlosterman, Katja Elisabeth (Author) / Ros, Alexandra (Thesis director) / Redding, Kevin (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12