Matching Items (9)
Filtering by

Clear all filters

152504-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP).

Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP). Production of beta-amyloid from APP is increased when cells are subject to stress since both APP and beta-secretase are upregulated by stress. An increased beta-amyloid level promotes aggregation of beta-amyloid into toxic species which cause an increase in reactive oxygen species (ROS) and a decrease in cell viability. Therefore reducing beta-amyloid generation is a promising method to control cell damage following stress. The goal of this thesis was to test the effect of inhibiting beta-amyloid production inside stressed AD cell model. Hydrogen peroxide was used as stressing agent. Two treatments were used to inhibit beta-amyloid production, including iBSec1, an scFv designed to block beta-secretase site of APP, and DIA10D, a bispecific tandem scFv engineered to cleave alpha-secretase site of APP and block beta-secretase site of APP. iBSec1 treatment was added extracellularly while DIA10D was stably expressed inside cell using PSECTAG vector. Increase in reactive oxygen species and decrease in cell viability were observed after addition of hydrogen peroxide to AD cell model. The increase in stress induced toxicity caused by addition of hydrogen peroxide was dramatically decreased by simultaneously treating the cells with iBSec1 or DIA10D to block the increase in beta-amyloid levels resulting from the upregulation of APP and beta-secretase.
ContributorsSuryadi, Vicky (Author) / Sierks, Michael (Thesis advisor) / Nielsen, David (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2014
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
137006-Thumbnail Image.png
Description
Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages 65 and older. Beta-Amyloid (Aβ) is an Alzheimer's target protein,

Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages 65 and older. Beta-Amyloid (Aβ) is an Alzheimer's target protein, which starts as a single protein, but can misfold and bind to itself, forming larger chains and eventually fibrils and plaques of Aβ in the brain. Antibodies that bind to different regions and sizes of Aβ may prevent progression into a more toxic stage. The antibody worked with in this thesis, A4 scFv, binds to oligomeric Aβ. The objective of this antibody research is to optimize the production of functional antibodies, specifically A4, through modifications in the scFv growth process, in order to enhance the discovery of possible diagnostics and therapeutics for Alzheimer's disease. In order to produce functional A4 antibody, four complex sugars were tested in the E. Coli bacterial culture growth media that expresses the desired antibody. The sugars: sucrose, glucose, mannitol, and sorbitol were used in the growth process to improve the yield of functional antibody. Through the steps of growth, purification, and dialysis, the sugar sorbitol was found to provide the optimal results of ending functional antibody concentration. Once an ample amount of functional A4 scFv is produced, it can be used in assays as a biomarker for Alzheimer's disease.
ContributorsDolberg, Taylor Brianne (Author) / Sierks, Michael (Thesis director) / Nielsen, David (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
131399-Thumbnail Image.png
Description
Current research attempts to address the increasing prevalence of Alzheimer’s disease (AD) by
finding causes and treatments to revert misfolded proteins and ceasing progression due to
Diabetes Mellitus (DM). The goal of this review is to highlight the contribution of misfolded Tau
protein to AD through neurofibrillary tangles solely, and in conjunction with

Current research attempts to address the increasing prevalence of Alzheimer’s disease (AD) by
finding causes and treatments to revert misfolded proteins and ceasing progression due to
Diabetes Mellitus (DM). The goal of this review is to highlight the contribution of misfolded Tau
protein to AD through neurofibrillary tangles solely, and in conjunction with known causative
agents such as 𝛽-amyloid protein. Finally, it interprets the association of Tau with DM and its
effects on the progression of AD.
ContributorsTavani, Jennifer Renee (Author) / Houtchens, Jason (Thesis director) / Lisenbee, Cayle (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132548-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in loss of cognitive function and is not considered part of the typical aging process. Recently, research is being conducted to study environmental effects on AD because the exact molecular mechanisms behind AD are not known. The associations between various toxins and AD have been mixed and unclear. In order to better understand the role of the environment and toxic substances on AD, we conducted a literature review and geospatial analysis of environmental, specifically wastewater, contaminants that have biological plausibility for increasing risk of development or exacerbation of AD. This literature review assisted us in selecting 10 wastewater toxic substances that displayed a mixed or one-sided relationship with the symptoms or prevalence of Alzheimer’s for our data analysis. We utilized data of toxic substances in wastewater treatment plants and compared them to the crude rate of AD in the different Census regions of the United States to test for possible linear relationships. Using data from the Targeted National Sewage Sludge Survey (TNSSS) and the Centers for Disease Control and Prevention (CDC), we developed an application using R Shiny to allow users to interactively visualize both datasets as choropleths of the United States and understand the importance of this area of research. Pearson’s correlation coefficient was calculated resulting in arsenic and cadmium displaying positive linear correlations with AD. Other analytes from this statistical analysis demonstrated mixed correlations with AD. This application and data analysis serve as a model in the methodology for further geospatial analysis on AD. Further data analysis and visualization at a lower level in terms of scope is necessary for more accurate and reliable evidence of a causal relationship between the wastewater substance analytes and AD.
GitHub Repository: https://github.com/komal-agrawal/AD_GIS.git
ContributorsAgrawal, Komal (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Alzheimer’s disease (AD) and Frontotemporal lobe dementia (FTLD) are types of dementia that have distinct differences. To help identify some of the neural differences, researchers use diffusion tensor imaging (DTI) techniques to assist with diagnosing patients and track progression over time. The major objective of this experiment was to use

Alzheimer’s disease (AD) and Frontotemporal lobe dementia (FTLD) are types of dementia that have distinct differences. To help identify some of the neural differences, researchers use diffusion tensor imaging (DTI) techniques to assist with diagnosing patients and track progression over time. The major objective of this experiment was to use the advanced diffusion tensor imaging techniques of Fractional Anisotropy (FA) and Free water (FW) to help differentiate between AD and FTLD neurodegeneration. The scope of this experiment was to examine literature research on AD and FTLD by gathering the mean values of (FA) and (FW) to identify diffusivity susceptibility in the specific brain regions of the Uncinate Fasciculus (UF) and the Superior Temporal Gyrus (STG). The methods used were the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Frontotemporal Lobe Degenerative Neuroimaging Initiative (FTLD): These data repositories provide researchers with study data to define the progression of AD and FTLD. Next, an imaging analysis was used to calculate the average FA and FW through each slice of the brain regions UF and STG in standard space. Then FreeSurfer segmented Superior Temporal Gyrus and the JHU ICBM Atlas of the Uncinate Fasciculus were used as a set of tools for analysis and visualization of structural and functional brain imaging data for processing the cross-sectional and longitudinal data. We calculated 95% Confidence intervals for mean FW and FA at each slice and direction across 21 participants within each dementia group to determine regions of overlap and nonoverlap. Results indicated that for the FA and FW graphs in the x and z directions among UF and STG regions, there were more non-overlap regions between the AD and FTLD in the FW graphs across x and z-directions in particular the UF. Our results indicate that there may be concomitant decline in white and gray matter regions in dementia, and FW may be more sensitive detecting AD related neurodegeneration in the UF and STG regions.

ContributorsMalone, Joshua (Author) / Ofori, Edward (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
Description
Objective: To examine the change in caregiver burden, stress, and heart rate variability (HRV) scores when family caregivers (FCG) of patients with Alzheimer’s disease (AD) used heart rate variability biofeedback (HRVB). Additional factors that could potentially moderate the effects of HRVB, such as education and income level, were separately examined.

Objective: To examine the change in caregiver burden, stress, and heart rate variability (HRV) scores when family caregivers (FCG) of patients with Alzheimer’s disease (AD) used heart rate variability biofeedback (HRVB). Additional factors that could potentially moderate the effects of HRVB, such as education and income level, were separately examined. Methods: An 8-week HRVB intervention was compared to a music listening control (MLC) condition for 30 family caregivers (FCGs) of individuals with Alzheimer’s disease (AD) (and related dementias: ADRD). Analysis per education and income level were separately conducted. Results: The HRVB intervention with higher education and lower-income individuals showed more favorable HRV outcomes (noted to be slightly decreased in higher-income individuals). Perceived stress was reduced for both intervention groups, and caregiver burden levels decreased for all income groups, particularly in those with lower incomes. Discussion: Future researchers should increase the sample size, explore stratification based on income and education levels, and consider gender-based divisions, as these factors could yield valuable insights.
ContributorsMathews, Megan (Author) / Vizcaino, Maricarmen (Thesis director) / Larkey, Linda (Committee member) / James, Darith (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-12
ContributorsMathews, Megan (Author) / Vizcaino, Maricarmen (Thesis director) / Larkey, Linda (Committee member) / James, Darith (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-12
ContributorsMathews, Megan (Author) / Vizcaino, Maricarmen (Thesis director) / Larkey, Linda (Committee member) / James, Darith (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-12