Matching Items (6)
Filtering by

Clear all filters

148139-Thumbnail Image.png
Description

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant pathogens. Not only is this strategy costly and time consuming, it is also unsustainable. To contend with this problem, many multi-drug treatment strategies are being explored. Previous studies have shown that resistance to some drug combinations is not possible, for example, resistance to a common antifungal drug, fluconazole, seems impossible in the presence of radicicol. We believe that in order to understand the viability of multi-drug strategies in combating drug resistance, we must understand the full spectrum of resistance mutations that an organism can develop, not just the most common ones. It is possible that rare mutations exist that are resistant to both drugs. Knowing the frequency of such mutations is important for making predictions about how problematic they will be when multi-drug strategies are used to treat human disease. This experiment aims to expand on previous research on the evolution of drug resistance in S. cerevisiae by using molecular barcodes to track ~100,000 evolving lineages simultaneously. The barcoded cells were evolved with serial transfers for seven weeks (200 generations) in three concentrations of the antifungal Fluconazole, three concentrations of the Hsp90 inhibitor Radicicol, and in four combinations of Fluconazole and Radicicol. Sequencing data was used to track barcode frequencies over the course of the evolution, allowing us to observe resistant lineages as they rise and quantify differences in resistance evolution across the different conditions. We were able to successfully observe over 100,000 replicates simultaneously, revealing many adaptive lineages in all conditions. Our results also show clear differences across drug concentrations and combinations, with the highest drug concentrations exhibiting distinct behaviors.

ContributorsApodaca, Samuel (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Huijben, Silvie (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
173395-Thumbnail Image.png
Description

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory as an organizing principle of biology.

Created2017-05-29
173427-Thumbnail Image.png
Description

The San Diego Zoo Institute for Conservation Research (SDZICR) in San Diego, California, is a research organization that works to generate, use, and share information for the conservation of wildlife and their habitats. In 1975, Kurt Benirschke, a researcher at the University of California, San Diego (UCSD) who studied human

The San Diego Zoo Institute for Conservation Research (SDZICR) in San Diego, California, is a research organization that works to generate, use, and share information for the conservation of wildlife and their habitats. In 1975, Kurt Benirschke, a researcher at the University of California, San Diego (UCSD) who studied human and animal reproduction, and Charles Bieler, the director of the San Diego Zoo, collaborated to form the Center for Reproduction of Endangered Species (CRES). In 2009, the San Diego Zoo announced the creation of SDZICR, which expanded and replaced CRES, to provide central organization and management of scientific programs at the San Diego Zoo. By 2004, Allison Alberts was the director of research and for more than a decade oversaw the SDZICR's many research initiatives, including the collection and storage of genetic and reproductive information of rare and endangered animal and plant species.

Created2017-06-12
172754-Thumbnail Image.png
Description

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell biology. In The Cell, Wilson described the evidence and theories of his time about cells and identified topics for future study. He helped show how each part of the cell works during cell division and in every step of early development of an organism. Developmental biologists trained in the mid-twentieth century reported WilsonÕs text as their foundation for understanding biology, including about how cells, development, heredity, and evolution interact. Wilson considered cells as the center of all biological phenomena.

Created2013-08-05
173374-Thumbnail Image.png
Description

Edmund Beecher Wilson in the US published An Atlas of Fertilization and Karyokinesis of the Ovum (hereafter called An Atlas) in 1895. The book presents photographs by photographer Edward Leaming that capture stages of fertilization, the fusion of sperm and egg and early development of sea urchin (Toxopneustes variegatus) ova,

Edmund Beecher Wilson in the US published An Atlas of Fertilization and Karyokinesis of the Ovum (hereafter called An Atlas) in 1895. The book presents photographs by photographer Edward Leaming that capture stages of fertilization, the fusion of sperm and egg and early development of sea urchin (Toxopneustes variegatus) ova, or egg cell. Prior to An Atlas, no one photographed of eggcell division in clear detail. Wilson obtained high quality images of egg cells by cutting the cells into thin sections and preserving them throughout different stages of development. An Atlas helped Wilson develop methods to present key stages of fertilization and development, which he later used in his textbook The Cell in Development and Inheritance, first published in 1896. Furthermore, An Atlas was the first publication to present accurate images of the fertilized egg cell during early stages of development.

Created2017-04-20
165220-Thumbnail Image.png
Description

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on precise measurements of the relative fitness advantage (s) for each mutation and the strength of the fitness tradeoff that each mutation suffers in other contexts. Precisely quantifying s helps us create better, more accurate models of how mutants act in different treatment strategies. For example, P. falciparum acquires antimalarial drug resistance through a series of mutations to a single gene. Prior work in yeast expressing this P. falciparum gene demonstrated that mutations come with tradeoffs. Computational work has demonstrated the possibility of a treatment strategy which enriches for a particular resistant mutation that then makes the population grow poorly once the drug is removed. This treatment strategy requires knowledge of s and how it changes when multiple mutants are competing across various drug concentrations. Here, we precisely quantified s in varying drug concentrations for five resistant mutants, each of which provide varying degrees of drug resistance to antimalarial drugs. DNA barcodes were used to label each strain, allowing the mutants to be pooled together for direct competition in different concentrations of drug. This will provide data that can make the models more accurate, potentially facilitating more effective drug treatments in the future.

ContributorsNewell, Daphne (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05