Matching Items (4)
Filtering by

Clear all filters

150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
156178-Thumbnail Image.png
Description
The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress

The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress can return to levels similar to controls when a post-stress “rest” period (i.e., undisturbed except for normal husbandry) is given prior to testing. Male rats underwent chronic restraint stress for 6hr/day/21days (STR-IMM). Some rats, underwent a post-stress rest period for 6- or 3-weeks after the end of stress (STR-R6, STR-R3). Control (CON) rats were unrestrained for the duration of the experiment. In Experiment 1, following the stress or rest manipulation, all rats were acclimated to conditioning and extinction contexts, fear conditioned with 3 tone-foot shock pairings, and then had two days of extinction training. All groups froze similarly to the tone across all training sessions. However, STR-R6/R3 froze less in the non-shock context than did STR-IMM or CON. During extinction training, STR-IMM showed high levels of freezing to the non-shock context, leading to a concern they may be generalizing across contexts. Consequently, a follow-up experiment tested for context generalization. In Experiment 2, STR-IMM rats underwent a generalization test in an environment that was either different or the same as the conditioning environment, using STR-R6 as a comparison. STR-IMM and STR-R6 showed similar relative levels of freezing to tone and context, regardless of their conditioning environment to reveal that STR-IMM did not generalize and instead, maybe expressing hypervigilance. Thus, the present study demonstrated the novel finding that a rest period from chronic stress can lead to reduced fear responsiveness in a non-shock environment.
ContributorsJudd, Jessica M (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017