Matching Items (5)
Filtering by

Clear all filters

157284-Thumbnail Image.png
Description
Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research

Previous literature was reviewed in an effort to further investigate the link between notification levels of a cell phone and their effects on driver distraction. Mind-wandering has been suggested as an explanation for distraction and has been previously operationalized with oculomotor movement. Mind-wandering’s definition is debated, but in this research it was defined as off task thoughts that occur due to the task not requiring full cognitive capacity. Drivers were asked to operate a driving simulator and follow audio turn by turn directions while experiencing each of three cell phone notification levels: Control (no texts), Airplane (texts with no notifications), and Ringer (audio notifications). Measures of Brake Reaction Time, Headway Variability, and Average Speed were used to operationalize driver distraction. Drivers experienced higher Brake Reaction Time and Headway Variability with a lower Average Speed in both experimental conditions when compared to the Control Condition. This is consistent with previous research in the field of implying a distracted state. Oculomotor movement was measured as the percent time the participant was looking at the road. There was no significant difference between the conditions in this measure. The results of this research indicate that not, while not interacting with a cell phone, no audio notification is required to induce a state of distraction. This phenomenon was unable to be linked to mind-wandering.
ContributorsRadina, Earl (Author) / Gray, Robert (Thesis advisor) / Chiou, Erin (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
157402-Thumbnail Image.png
Description
As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this

As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this pitfall. Current practices in social media rely on the users to detect false information and use appropriate discretion when deciding to share information online. This is ineffective and will predicatively end with users being unable to discern true from false information at all, as deceptive information becomes more difficult to distinguish from true information. To proactively combat inaccurate and deceptive information on social media, research must be conducted to understand not only the interaction effects of false content and user characteristics, but user behavior that stems from this interaction as well. This study investigated the effects of confirmation bias and susceptibility to deception on an individual’s choice to share information, specifically to understand how these factors relate to the sharing of false controversial information.
ContributorsChinzi, Ashley (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2019
157942-Thumbnail Image.png
Description
Vehicular automation and autonomy are emerging fields that are growing at an

exponential rate, expected to alter the very foundations of our transportation system within the next 10-25 years. A crucial interaction has been born out this new technology: Human and automated drivers operating within the same environment. Despite the well-

Vehicular automation and autonomy are emerging fields that are growing at an

exponential rate, expected to alter the very foundations of our transportation system within the next 10-25 years. A crucial interaction has been born out this new technology: Human and automated drivers operating within the same environment. Despite the well- known dangers of automobiles and driving, autonomous vehicles and their consequences on driving environments are not well understood by the population who will soon be interacting with them every day. Will an improvement in the understanding of autonomous vehicles have an effect on how humans behave when driving around them? And furthermore, will this improvement in the understanding of autonomous vehicles lead to higher levels of trust in them? This study addressed these questions by conducting a survey to measure participant’s driving behavior and trust when in the presence of autonomous vehicles. Participants were given several pre-tests to measure existing knowledge and trust of autonomous vehicles, as well as to see their driving behavior when in close proximity to autonomous vehicles. Then participants were presented with an educational intervention, detailing how autonomous vehicles work, including their decision processes. After examining the intervention, participants were asked to repeat post-tests identical to the ones administered before the intervention. Though a significant difference in self-reported driving behavior was measure between the pre-test and post- test, there was no significant relation found between improvement in scores on the education intervention knowledge check and driving behavior. There was also no significant relation found between improvement in scores on the education intervention knowledge check and the change in trust scores. These findings can be used to inform autonomous vehicle and infrastructure design as well as future studies of the effects of autonomous vehicles on human drivers in experimental settings.
ContributorsReagan, Taylor (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157988-Thumbnail Image.png
Description
The current study aims to explore factors affecting trust in human-drone collaboration. A current gap exists in research surrounding civilian drone use and the role of trust in human-drone interaction and collaboration. Specifically, existing research lacks an explanation of the relationship between drone pilot experience, trust, and trust-related behaviors as

The current study aims to explore factors affecting trust in human-drone collaboration. A current gap exists in research surrounding civilian drone use and the role of trust in human-drone interaction and collaboration. Specifically, existing research lacks an explanation of the relationship between drone pilot experience, trust, and trust-related behaviors as well as other factors. Using two dimensions of trust in human-automation team—purpose and performance—the effects of experience on drone design and trust is studied to explore factors that may contribute to such a model. An online survey was conducted to examine civilian drone operators’ experience, familiarity, expertise, and trust in commercially available drones. It was predicted that factors of prior experience (familiarity, self-reported expertise) would have a significant effect on trust in drones. The choice to use or exclude the drone propellers in a search-and-identify scenario, paired with the pilots’ experience with drones, would further confirm the relevance of the trust dimensions of purpose versus performance in the human-drone relationship. If the pilot has a positive sense of purpose and benevolence with the drone, the pilot trusts the drone has a positive intent towards them and the task. If the pilot has trust in the performance of the drone, they ascertain that the drone has the skill to do the task. The researcher found no significant differences between mean trust scores across levels of familiarity, but did find some interaction between self-report expertise, familiarity, and trust. Future research should further explore more concrete measures of situational participant factors such as self-confidence and expertise to understand their role in civilian pilots’ trust in their drone.
ContributorsNiichel, Madeline Kathleen (Author) / Chiou, Erin (Thesis advisor) / Cooke, Nancy J. (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2019