Matching Items (9)
Filtering by

Clear all filters

157388-Thumbnail Image.png
Description
Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools

Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools support people in identifying interventions that work for them, personally.

One approach to support such personalization is via self-experimentation using single-case designs. ‘Hack Your Health’ is a tool that guides individuals through an 18-day self-experiment to test if an intervention they choose (e.g., meditation, gratitude journaling) improves their own psychological well-being (e.g., stress, happiness), whether it fits in their routine, and whether they enjoy it.

The purpose of this work was to conduct a formative evaluation of Hack Your Health to examine user burden, adherence, and to evaluate its usefulness in supporting decision-making about a health intervention. A mixed-methods approach was used, and two versions of the tool were tested via two waves of participants (Wave 1, N=20; Wave 2, N=8). Participants completed their self-experiments and provided feedback via follow-up surveys (n=26) and interviews (n=20).

Findings indicated that the tool had high usability and low burden overall. Average survey completion rate was 91%, and compliance to protocol was 72%. Overall, participants found the experience useful to test if their chosen intervention helped them. However, there were discrepancies between participants’ intuition about intervention effect and results from analyses. Participants often relied on intuition/lived experience over results for decision-making. This suggested that the usefulness of Hack Your Health in its current form might be through the structure, accountability, and means for self-reflection it provided rather than the specific experimental design/results. Additionally, situations where performing interventions within a rigorous/restrictive experimental set-up may not be appropriate (e.g., when goal is to assess intervention enjoyment) were uncovered. Plausible design implications include: longer experimental and phase durations, accounting for non-compliance, missingness, and proximal/acute effects, and exploring strategies to complement quantitative data with participants’ lived experiences with interventions to effectively support decision-making. Future work should explore ways to balance scientific rigor with participants’ needs for such decision-making.
ContributorsPhatak, Sayali Shekhar (Author) / Buman, Matthew P (Thesis advisor) / Hekler, Eric B. (Committee member) / Huberty, Jennifer L (Committee member) / Johnston, Erik W., 1977- (Committee member) / Swan, Pamela D (Committee member) / Arizona State University (Publisher)
Created2019
156476-Thumbnail Image.png
Description
The purpose of this study was to examine the feasibility and preliminary efficacy of a theory-driven and a atheoretical reminder point-of-choice (PoC) prompt interventions on reducing workplace sedentary behavior in office workers with self-reported low usage (<4 hours per day) of their sit-stand workstations in the standing position. The design

The purpose of this study was to examine the feasibility and preliminary efficacy of a theory-driven and a atheoretical reminder point-of-choice (PoC) prompt interventions on reducing workplace sedentary behavior in office workers with self-reported low usage (<4 hours per day) of their sit-stand workstations in the standing position. The design of this study was a cross-over trial including randomization into either the theory-driven or atheoertical reminder condition, after completion of a no prompt control condition. Participants (N=19) included full-time, primarily female, Caucasian, middle-aged office workers. The primary aim of this study was to assess the feasibility of these two PoC prompt conditions on reducing sedentary behaviors through the use of a Therapy Evaluation Questionnaire. The secondary aim of this study was to assess the preliminary efficacy of the two PoC prompt conditions on reducing sedentary behaviors relative to no-prompt control using the activPAL micro device. For the primary aim, descriptive means adjusted for ordering effect were computed. For the secondary aim, mixed-effects regression models were used to cluster for observations within-persons and were adjusted for age, gender, race, job-type, and ordering effects. During the no-prompt control, participants spent 267.90 ± 68.01 sitting and 170.20 ± 69.34 min/8hr workday standing. The reminder PoC prompt condition significantly increased sanding time (b[se] = 24.52 [11.09], p=0.034) while the theory-driven PoC condition significantly decreased time spent in long sitting bouts b[se] = -34.86 [16.20], p=0.036), both relative to no prompt control. No statistically significant reductions in sitting time were seen in either PoC prompt condition. Furthermore, no statistically significant differences between the two PoC prompt conditions were observed. This study provides feasibility insight in addition to objective measures of sedentary behaviors regarding the use of PoC prompt interventions in the workplace.
ContributorsLarouche, Miranda (Author) / Buman, Matthew P (Thesis advisor) / Ainsworth, Barbara E (Thesis advisor) / Huberty, Jennifer L (Committee member) / Arizona State University (Publisher)
Created2018
156692-Thumbnail Image.png
Description
The purpose of this dissertation was 1) to develop noninvasive strategies to assess skeletal muscle size, architecture, and composition in young and old adults (study #1) and 2) evaluate the impact of chemotherapeutic treatment on skeletal muscle satellite cells and capillaries (study #2). For study #1 ultrasound images were obtained

The purpose of this dissertation was 1) to develop noninvasive strategies to assess skeletal muscle size, architecture, and composition in young and old adults (study #1) and 2) evaluate the impact of chemotherapeutic treatment on skeletal muscle satellite cells and capillaries (study #2). For study #1 ultrasound images were obtained from the quadriceps muscles of young (8 m, 8 f) and older (7 m, 5 f) participants on two occasions, separated by 5-15 days. Images were collected while the participants were both standing and supine, and were analyzed for muscle thickness, pennation angle, and echogenicity. In addition, test-retest reliability and ICCs were evaluated for each posture and when imaging sites remained marked or were re-measured from visit #1 to visit #2. Generally, in both younger and older adults muscle thickness was greater and echogenicity was lower in the anterior quadriceps when images were collected standing versus supine. Maintaining the imaging site between visits did not influence test re-test reliability for either age group. Older adults exhibited smaller muscle thickness, lower pennation angle and increased echogenicity. Further, variability for the use of ultrasound to determine muscle thickness and pennation angle was greater in older versus younger adults. Findings from study #1 highlight several methodological considerations for US-based assessment of skeletal muscle characteristics that should be considered for improving reproducibility and generalizability of US to assess skeletal muscle characteristics and function across the aging spectrum. This is particularly relevant given the emerging use of ultrasound to assess skeletal muscle characteristics in healthy and clinical populations. In the second study, ovariectomized female Sprague-Dawley rats were randomized to receive three bi-weekly intraperitoneal injections of the chemotherapeutic drug, Doxorubicin (DOX) (4mg/kg; cumulative dose 12mg/kg) or vehicle (VEH; saline). Animals were euthanized 5d following the last injection, and the soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected and prepared for immunohistochemical and RT-qPCR analyses. Relative to VEH, cross-sectional area (CSA) of the SOL and EDL muscle fibers were 26% and 33% smaller, respectively, in DOX animals (P<0.05). In the SOL satellite cell and capillary densities were 39% and 35% lower, respectively, in DOX animals (P<0.05), whereas in the EDL satellite cell and capillary densities were unaffected by DOX administration (P>0.05). In the SOL MYF5 mRNA expression was increased in DOX animals (P<0.05), while in the EDL MGF mRNA expression was reduced in DOX animals (P<0.05). Chronic DOX administration is associated with reduced fiber size in multiple skeletal muscles, however DOX appears to impact the satellite cell and capillary densities in a muscle-specific manner. These findings from study #2 highlight that therapeutic targets to protect skeletal muscle from DOX may vary across muscles. Collectively, these findings 1) improve the ability to examine muscle size and function in younger and older adults, and 2) identify promising therapeutic targets to protect skeletal muscle from the harmful effects of chemotherapy treatment.
ContributorsD'Lugos, Andrew (Author) / Dickinson, Jared M (Thesis advisor) / Buman, Matthew P (Committee member) / Gaesser, Glenn A (Committee member) / Huentelman, Matthew J (Committee member) / Katsanos, Christos S (Committee member) / Arizona State University (Publisher)
Created2018
134942-Thumbnail Image.png
Description
Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly

Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly produced in the hypopharyngeal glands (HPG) of worker bees which is used to feed both the developing brood and the queen. The HPG is closely associated with divisions of labor as the peak in its development corresponds with the nursing behavior. Independent of the connection between Vg and the HPG, Vg has been seen to play a fundamental role in divisions of labor by affecting worker gustatory responses, age of onset of foraging, and foraging preferences. Similar to Vg, the number of ovarioles in worker ovaries is also associated with division of labor as bees with more ovarioles tend to finish tasks in the hive and become foragers faster. This experiment aims to connect HPGs, ovaries, and Vg by proposing a link between them in the form of ecdysone (20E). 20E is a hormone produced by the ovaries and is linked to ovary development and Vg by tyramine titers. By treating young emerged bees with ecdysone and measuring HPG and ovary development over a trial period, this experiment seeks to determine whether 20E affects division of labor through Vg. We found that though the stress of injection caused a significant decrease in development of both the ovaries and HPG, there was no discernable effect of 20E on either of these organs.
ContributorsChin, Elijah Seth (Author) / Wang, Ying (Thesis director) / Page, Robert (Committee member) / Cook, Chelsea (Committee member) / School of Molecular Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154309-Thumbnail Image.png
Description
This study aimed to identify the emotional/affective sources of discrepancies between physical activity behavior and a widely used self-perception measure of physical activity motivation. Overweight women (body mass index [BMI] ≥ 25 kg/m2, 18-64 years of age; N=37) were recruited from Arizona State University community through flyers and online newsletters.

This study aimed to identify the emotional/affective sources of discrepancies between physical activity behavior and a widely used self-perception measure of physical activity motivation. Overweight women (body mass index [BMI] ≥ 25 kg/m2, 18-64 years of age; N=37) were recruited from Arizona State University community through flyers and online newsletters. Participants wore a SenseWear accelerometer for 6 nights and 7 days and followed their normal patterns of daily living. Participants then completed a single lab visit and verbally responded to questions from the Behavorial Regulation Exercise Questionnaire (BREQ-2) while being video and audio recorded. Captured emotional responses were evaluated with facial recognition software (Noldus FaceReader). Discrepancies between BREQ-2 responses and physical activity behavior were associated with happiness and sadness emotional responses extracted from the facial recognition software using regression-based analyses. Results indicated an association between monitored physical activities and captured emotional response - specifically sadness - and that as intensity in physical activity increases, motivation increases. Associations between happiness/sadness and physical activity were not observed for all intensities of physical activity. A marginally significant association was observed for amotivation and sedentary, light-intensity physical activity, and moderate-vigorous physical activity in the sample. This study demonstrates a proof-of-concept for the integration of an empirical evaluation of happiness and sadness emotional states into the relationship between physical activity motivation and behavior.
ContributorsBryant, Sarah (Author) / Buman, Matthew P (Thesis advisor) / Chisum, Jack W (Committee member) / Hekler, Eric (Committee member) / Arizona State University (Publisher)
Created2016
154794-Thumbnail Image.png
Description
The winter holiday period has been highlighted as a major risk period for weight gain due to excess caloric intake in the form of fat and sugar. Furthermore, diets high in fat and sugar have been implicated in the pathogenesis of diabetes and cardiovascular disease. Exercise aids in the prevention

The winter holiday period has been highlighted as a major risk period for weight gain due to excess caloric intake in the form of fat and sugar. Furthermore, diets high in fat and sugar have been implicated in the pathogenesis of diabetes and cardiovascular disease. Exercise aids in the prevention of weight/fat gain, and prevents deleterious changes in cardiometabolic function. The objective of this study was to examine the effects of a fat-sugar supplemented diet, with and without two different exercise training protocols, on body composition, glycemic control and other markers of cardiovascular disease in an at-risk population of overweight and obese males. Twenty-seven, healthy overweight/obese (BMI >25 kg/m2) males were fed 2 donuts per day, 6 days/week, for four weeks, while maintaining their current diet. In addition, all subjects were randomized to one of the following conditions: sedentary control, 1,000 kcal/week moderate-intensity continuous training (MICT) (50% of peak oxygen consumption), or 1,000 kcal/week high-intensity interval training (HIIT) (90-95% of peak heart rate). Supervised exercise training was performed 4 days/week on a cycle ergometer. Changes in body weight and composition, endothelial function, arterial stiffness, glycemic control, blood lipids and cardiorespiratory fitness (CRF) were assessed before and after the intervention. Body weight, lean mass and visceral fat increased significantly in HIIT (p<0.05) and were unchanged in MICT. There was a trend for a significant increase in body weight (p=0.07) and lean mass (p=0.11) in control. Glycemic control during the 2-h OGTT improved significantly in MICT and control, with no change in HIIT. Hepatic insulin resistance index (IRI) and 30-min insulin during the OGTT improved significantly after MICT and worsened following control (p=0.03), while HIIT was unchanged. CRF increased significantly in both HIIT and MICT, with no change in control (p<0.001). There were no significant changes in other markers of cardiovascular disease. The addition of a fat-sugar supplement (~14,500 kcal) over a 4-week period was not sufficient to induce deleterious changes in body composition and cardiometabolic health in overweight/obese young males. Exercise training did not afford overweight/obese males additional health benefits, with the exception of improvements in fitness and hepatic IRI.
ContributorsTucker, Wesley Jack (Author) / Gaesser, Glenn A (Thesis advisor) / Angadi, Siddhartha S (Committee member) / Whisner, Corrie M (Committee member) / Buman, Matthew P (Committee member) / Shaibi, Gabriel (Committee member) / Arizona State University (Publisher)
Created2016
189250-Thumbnail Image.png
Description
The 24-hour day is spent engaging in activities that include light-physical activity (LPA), moderate-vigorous physical activity (MVPA), sedentary time (i.e., sitting/lying/reclining posture with energy expenditure <1.5 METs, while awake), and sleep. These behaviors are mutually exclusive and time spent in one behavior affects the time spent in another. The time

The 24-hour day is spent engaging in activities that include light-physical activity (LPA), moderate-vigorous physical activity (MVPA), sedentary time (i.e., sitting/lying/reclining posture with energy expenditure <1.5 METs, while awake), and sleep. These behaviors are mutually exclusive and time spent in one behavior affects the time spent in another. The time among these 24-hour behaviors is also associated with cardiometabolic health outcomes, including adiposity. Assessing specific behavioral contexts and their relationship within the 24-hour day is underdeveloped, this includes recreational sedentary screen time (rSST). rSST is sedentary time with televisions, computers, smartphones, tablets, inactive video games, and its relationship with other 24-hour behaviors is underdeveloped. This dissertation works evaluates the relationship between rSST and 24-hour behaviors, and adiposity in adults. The first study reviewed the existing observational and experimental evidence for rSST and its relationship with 24-hour behaviors by conducting a scoping review. From the 75 experimental and observational studies included, the evidence supported an overall positive association between rSST and non-screen sedentary behavior, an overall negative association between rSST with physical activity, and overall positive and negative associations between rSST with various sleep variables. The second study assessed the daily associations between rSST and 24-hour behaviors and how associations are influenced by age, sex, chronotype, and week- or weekend days. The findings include significant negative associations at between- and within-person levels for rSST with non-screen sedentary time, standing, LPA, MVPA, and sleep that were differentially influenced by age, chronotype, and week- or weekend day. The third study examined reallocating time between rSST and 24-hour behaviors and the associations with adiposity (i.e., body mass index, body fat percentage, and waist circumference). The results showed significant associations of replacing non-screen sedentary time with MVPA for both body fat percentage and waist circumference; and no significant associations between rSST and 24-hour behaviors for body mass index. Overall, this dissertation work provides important insights into the relationships between rSST and 24-hour behaviors and their relation to adiposity. These findings can be used to inform future intervention development targeting multiple behavior changes and improving health outcomes.
ContributorsHasanaj, Kristina (Author) / Buman, Matthew P (Thesis advisor) / Petrov, Megan E (Thesis advisor) / Sears, Dorothy D (Committee member) / Yu, Fang (Committee member) / Keadle, Sarah K (Committee member) / Arizona State University (Publisher)
Created2023
161944-Thumbnail Image.png
Description
Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be

Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be important for olfaction has not been studied in detail. The focus of this work was to evaluate how restriction of antennae movements might affect a bee’s ability to detect and perceive odors. Bees were made to learn a certain odor and were then split up into a control group, a treatment group that had their antennae fixed with eicosane, and a sham treatment group that had a dot of eicosane on their heads in such a way that it would not affect antennae movements but still add the same amount of weight. Following a period of acclimation, the bees were tested with the conditioned odor, one that was perceptually similar to it, and to a dissimilar odor. Using proboscis-extension duration and latency as response measures, it became clear that both antenna fixation and sham treatments affected the conditioned behavior. However, these treatment effects did not reach statistical significance. Briefly, both fixation of antennae as well as the sham treatment reduced the discriminability of the conditioned and similar odors. Although more data can be collected to more fully evaluate the significance of the treatments, the behavior of the sham group could indicate that mechanoreceptive hairs on the head play an important role in olfaction. It is also possible that there are other factors at play, possibly induced by the fixed bees’ increased stress levels.
ContributorsHozan, Alvin Robert (Author) / Smith, Brian H (Thesis advisor) / Lei, Hong (Committee member) / Cook, Chelsea (Committee member) / Arizona State University (Publisher)
Created2021
187604-Thumbnail Image.png
Description
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that affects movement and balance control. Falls are a common and often debilitating consequence of PD, and reactive balance control is critical in preventing falls. This dissertation aimed to determine the adaptability and neural control of reactive balance responses in people with

Parkinson's Disease (PD) is a progressive neurodegenerative disorder that affects movement and balance control. Falls are a common and often debilitating consequence of PD, and reactive balance control is critical in preventing falls. This dissertation aimed to determine the adaptability and neural control of reactive balance responses in people with PD. Aim 1 investigated whether people with PD at risk for falls can improve their reactive balance responses through a 2-week, 6-session training protocol. The study found that reactive step training resulted in immediate and retained improvements in stepping, as measured by the anterior-posterior margin of stability (MOS), step length, and step latency during backward stepping. The second aim explored the neural mechanisms behind eliciting and learning reactive balance responses in PD. The study investigated the white matter (WM) correlates of reactive stepping and responsiveness to step training in PD. White matter was not significantly correlated with any baseline stepping outcomes. However, greater retention of step length was associated with increased fractional anisotropy (FA) within the left anterior corona radiata, left posterior thalamic radiation, and right and left superior longitudinal fasciculi. Lower radial diffusivity (RD) within the left posterior and anterior corona radiata were associated with retention of step latency improvements. These findings highlight the importance of WM microstructural integrity in motor learning and retention processes in PD. The third aim examined the role of the somatosensory system in reactive balance control in people with PD. The tactile and proprioceptive systems were perturbed using vibrotactile stimulation during backward feet-in-place balance responses. The results showed that tactile and proprioceptive stimulation had minimal impact on reactive balance responses. Small effects were observed for delayed tibialis anterior (TA) onsets with proprioceptive stimulation at a medium intensity. Overall, this dissertation provides insights into improving reactive balance responses and the underlying neural mechanisms in PD, which can potentially inform the development of targeted interventions to reduce falls in people with PD.
ContributorsMonaghan, Andrew S (Author) / Peterson, Daniel S (Thesis advisor) / Ofori, Edward (Committee member) / Daliri, Ayoub (Committee member) / Buman, Matthew P (Committee member) / Fling, Brett W (Committee member) / Arizona State University (Publisher)
Created2023