Matching Items (3)
Filtering by

Clear all filters

136274-Thumbnail Image.png
Description
Civic engagement is often defined as political activism; to be a part of governmental decision making, the practices thereof, and various efforts of participation in voting. However, civic engagement is also known for its role within non-political work, such as community building and development. Because of the former definition many

Civic engagement is often defined as political activism; to be a part of governmental decision making, the practices thereof, and various efforts of participation in voting. However, civic engagement is also known for its role within non-political work, such as community building and development. Because of the former definition many members of our society have a tendency to not embrace the full potential of their community roles. It is always about who is a Republican, who is a Democrat, who looks better, or who has a better name. Now it must be noted that this is not in absolute, not all members of our society work in this thought process, but many still do. If that doesn't come as a surprise to you, then the simplicity of how you can be an engaged member will. As a student attending Arizona State University at the West campus in Phoenix, Arizona, I have chosen to challenge the traditional view of civic engagement and prepare this development plan for the campus community. Having done so, I not only discovered the paths that one can take to be engaged in such matters, but also continued my role as a civil servant.
ContributorsWaldie, Howard William (Author) / Ackroyd, William (Thesis director) / Smith, Sharon (Committee member) / Alvarez Manninen, Bertha (Committee member) / Barrett, The Honors College (Contributor) / School of Social and Behavioral Sciences (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2015-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05
164123-Thumbnail Image.png
Description
The use of DNA testing has been focused primarily on biological samples such as blood or saliva found at crime scenes. These types of evidence in the forensic field are sometimes difficult to come by, especially when there is no body to find to verify things such as identity or

The use of DNA testing has been focused primarily on biological samples such as blood or saliva found at crime scenes. These types of evidence in the forensic field are sometimes difficult to come by, especially when there is no body to find to verify things such as identity or status of a person. In the case of the burial of a body, they can be remote and relocated multiple times depending on each situation. Clandestine burials are not uncommon especially in the Arizona desert by the United States and Mexico border. Since there is no physical body to find the next best avenue to finding a clandestine burial is through search teams which can take weeks to months or other expensive technology such as ground penetrating radar (GPR). A new more interesting avenue to search for bodies is using the most found material–soil. Technology has allowed the possibility of using soil DNA microbiome testing initially to study the varieties of microbes that compose in soil. Microbiomes are unique and plentiful and essentially inescapable as humans are hosts of millions of them. The idea of a microbiome footprint at a crime scene seems out of reach considering the millions of species that can be found in various areas. Yet it is not impossible to get a list of varieties of species that could indicate there was a body in the soil as microbiomes seep through from decomposition. This study determines the viability of using soil microbial DNA as a method of locating clandestine graves by testing 6 different locations of a previous pig decomposition simulation. These two locations give two different scenarios that a body may be found either exposed to the sun in an open field or hidden under foliage such as a tree in the Sonoran Desert. The experiment will also determine more factors that could contribute to a correlation of microbiome specific groups associated with decomposition in soil such as firmicutes. The use of soil microbial DNA testing could open the doors to more interpretation of information to eventually be on par with the forensic use of biological DNA testing which could potentially supplement testimonies on assumed burial locations that occurs frequently in criminal cases of body relocation and reburial.
ContributorsMata Salinas, Jennifer (Author) / Marshall, Pamela (Thesis director) / Bolhofner , Katelyn (Committee member) / Wang, Yue (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2022-05