Matching Items (4)
Filtering by

Clear all filters

153522-Thumbnail Image.png
Description
The shape of glucose response and one hour (1-hr) glucose during an oral glucose tolerance test (OGTT) are emerging biomarkers for type 2 diabetes. The purpose of this study was two-fold: (1) to investigate the utility of these novel biomakers to differentiate type 2 diabetes risk in Latino youth, and

The shape of glucose response and one hour (1-hr) glucose during an oral glucose tolerance test (OGTT) are emerging biomarkers for type 2 diabetes. The purpose of this study was two-fold: (1) to investigate the utility of these novel biomakers to differentiate type 2 diabetes risk in Latino youth, and (2) to examine the genetic determinants in a Latino population.

Data from the ASU Arizona Insulin Registry (AIR) registry and the USC Study of Latino Adolescents at Risk for diabetes project were used to test the cross-sectional and prospective utility of novel biomarkers to identify youth at risk for type 2 diabetes. Pediatric and adult data from the ASU AIR registry were assessed to examine the association of single nucleotide polymorphisms (SNPs) with type 2 diabetes risk. Three KCNQ1 SNPs (rs151290; rs2237892; rs2237895) were examined as novel genetic variants for type 2 diabetes in Latinos.

Latino youth with a biphasic response in the AIR registry exhibited significantly better β-cell function (P < 0.05) compared to youth with a monophasic response. Additionally, Latino youth with a 1-hr glucose ≥155 mg/dL exhibited a significantly greater decline in β-cell function over 8 years compared with the <155 mg/dL group (β=-327.8±126.2, P = 0.01). Moreover, a 1-hr glucose ≥155 mg/dL was associated with a 2.5 times greater risk for developing prediabetes over time (P = 0.0001). 1-hr glucose was the most powerful predictor of prediabetes (area under the receiver operating characteristic curve=0.73) when compared to the traditional biomarkers including HbA1c (0.58), fasting (0.67), and 2-hr glucose (0.64). Two KCNQ1 SNPs (rs151290 and rs2237892) exhibited significant associations with type 2 diabetes risk factors. For the novel glycemic markers, 15 SNPs were associated with the glucose response curve, while 18 SNPs were associated with 1-hr glucose.

These data suggest that glucose response curve and 1-hr glucose during an OGTT independently differentiate type 2 diabetes risk among Latino youth. Furthermore, it was successful to replicate the association of type 2 diabetes risk with 2 KCNQ1 SNPs in a Latino population. Data suggest that novel glycemic biomarkers are influenced by genetic background in this high-risk population.
ContributorsKim, Joon Young (Author) / Shaibi, Gabriel Q (Thesis advisor) / Mandarino, Lawrence J (Committee member) / Coletta, Dawn K (Committee member) / De Filippis, Elena A (Committee member) / Arizona State University (Publisher)
Created2015
152666-Thumbnail Image.png
Description
In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat

In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat meal protects against postprandial endothelial dysfunction in obese adolescent males. Fourteen obese adolescent males (BMI%tile=98.5±0.6; 14.3±1.0yrs) completed the study. After initial screening, participants arrived, fasted at 9:00 in the morning where brachial artery flow-mediated dilation (FMD) was measured using duplex ultrasound after 20min of supine rest (7.0±3.0%) and completed a maximal exercise test on a cycle ergometer (VO2peak=2.6±0.5 L/min). Participants were randomized and completed 2 conditions: a morning high-fat meal challenge with evening prior HIIE (EX+M) or a morning high-fat meal challenge without prior exercise (MO). The EX+M condition included a single HIIE session on a cycle ergometer (8 X 2min at ≥90%HRmax, with 2min active recovery between bouts, 42min total) which was performed at 17:00 the evening prior to the meal challenge. In both conditions, a mixed-meal was tailored to participants body weight consisting of 0.7g of fat/kg of body weight consumed (889±95kcal; 65% Fat, 30% CHO). FMD was measured at fasting (>10hrs) and subsequently measured at 2hr and 4hr after high-fat meal consumption. Exercise did not improve fasting FMD (7.5±3.0 vs. 7.4±2.8%, P=0.927; EX+M and MO, respectively). Despite consuming a high-fat meal, FMD was not reduced at 2hr (8.4±3.4 vs. 7.6±3.9%; EX+M and MO, respectively) or 4hr (8.8±3.9 vs. 8.6±4.0%; EX+M and MO, respectively) in either condition and no differences were observed between condition (p(condition*time)=0.928). These observations remained after adjusting for baseline artery diameter and shear rate. We observed that HIIE, the evening prior, had no effect on fasting or postprandial endothelial function when compared with a meal only condition. Future research should examine whether exercise training may be able to improve postprandial endothelial function rather than a single acute bout in obese youth.
ContributorsRyder, Justin Ross (Author) / Shaibi, Gabriel Q (Thesis advisor) / Gaesser, Glenn A (Committee member) / Vega-Lopez, Sonia (Committee member) / Crespo, Noe C (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2014
156037-Thumbnail Image.png
Description
Background. Effects of lifestyle interventions on early biomarkers of oxidative stress and CVD risk in youth with prediabetes are unknown. Objective. To evaluate the effects of a lifestyle intervention to prevent type 2 diabetes among obese prediabetic Latino adolescents on oxidized lipoproteins. Design: In a quasi-experimental design, 35 adolescents (51.4%

Background. Effects of lifestyle interventions on early biomarkers of oxidative stress and CVD risk in youth with prediabetes are unknown. Objective. To evaluate the effects of a lifestyle intervention to prevent type 2 diabetes among obese prediabetic Latino adolescents on oxidized lipoproteins. Design: In a quasi-experimental design, 35 adolescents (51.4% male, age 15.5(1.0) y, body mass index (BMI) percentile 98.5(1.2), and glucose 2 hours after an oral glucose tolerance test-OGTT 141.2(12.2) mg/dL) participated in a 12-week intervention that included weekly exercise (three 60 min-sessions) and nutrition education (one 60 min-session). Outcomes measured at baseline and post-intervention were: fasting oxidized LDL and oxidized HDL (oxLDL and oxHDL) as oxidative stress variables; dietary intake of fresh fruit and vegetable (F&V) and fitness (VO2max) as behavioral variables; weight, BMI, body fat, and waist circumference as anthropometric variables; fasting glucose and insulin, 2hour glucose and insulin after an OGTT, insulin resistance (HOMA-IR), and lipid panel (triglycerides, total cholesterol, VLDL-c, LDL-c, HDL-c, and Non-HDL) as cardiometabolic variables. Results. Comparing baseline to post-intervention, significant decreases in oxLDL concentration were shown (51.0(14.0) and 48.7(12.8) U/L, p=0.022); however, the intervention did not decrease oxHDL (395.2(94.6) and 416.1(98.4) ng/mL, p=0.944). F&V dietary intake (116.4(97.0) and 165.8(91.0) g/d, p=0.025) and VO2max (29.7(5.0) and 31.6(4.7) ml*kg-1*min-1, p<0.001) significantly increased. Within-subjects correlations between changes in F&V intake and oxidized lipoproteins, adjusted for VO2max changes, were non-significant (R=-0.15, p=0.52 for oxLDL; R=0.22, p=0.25 for oxHDL). Anthropometric variables were significantly reduced (weight -1.3% p=0.042; BMI -2.2% and BMI percentile -0.4%, p=0.001; body fat -6.6% and waist circumference -1.8%, p=0.025). Cardiometabolic variables significantly improved, including reductions in glucose 2hour (-19.3% p<0.001), fasting insulin (-12.9% p=0.008), insulin 2hour (-53.5% p<0.001), and HOMA-IR (-12.5% p=0.015), with 23 participants (66%) that reverted toward a normal glucose tolerance status. Most lipid panel significantly changed (triglycerides -10.2% p=0.032; total cholesterol -5.4% p=0.002; VLDL-c -10.4% p=0.029; HDL-c -3.2% p=0.022; and Non-HDL -5.5% p=0.0007). Conclusion. The intervention resulted in differential effects on oxidized lipoproteins and significant improvements in behavioral, anthropometric and cardiometabolic variables, reducing the high metabolic risk of obese prediabetic kids.
ContributorsRenteria Mexia, Ana Maria (Author) / Shaibi, Gabriel Q (Thesis advisor) / Vega-Lopez, Sonia (Committee member) / Swan, Pamela D (Committee member) / Olson, Micah L (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2017
191493-Thumbnail Image.png
Description
Introduction: The incidence of type 2 diabetes (T2D) in youth is projected to increase through 2060, especially in minority youth. Every Little Step Counts (ELSC) has demonstrated efficacy in reducing T2D risk factors in Latino youth. Documenting the adaptation of ELSC to a family diabetes prevention program (FDPP) could support

Introduction: The incidence of type 2 diabetes (T2D) in youth is projected to increase through 2060, especially in minority youth. Every Little Step Counts (ELSC) has demonstrated efficacy in reducing T2D risk factors in Latino youth. Documenting the adaptation of ELSC to a family diabetes prevention program (FDPP) could support future adaptation and scaling of FDPPs.Purpose: To describe the process that guided the adaptation of a culturally grounded evidenced-based DPP tailored to Latino families, with the aim of using the Framework for Reporting Adaptations and Modifications-Enhanced (FRAME) to classify adaptations. Methods/Design: The approach that guided the adaptation involved community-based participatory research (CBPR) and phases commonly used to adapt health interventions. Inductive and deductive content analysis guided by the FRAME was conducted on data collected throughout the phases to identify and classify adaptations. Data was then triangulated with the entities involved in the adaptation, analyzed to determine the frequency and proportion of adaptations across the FRAME categories and levels, and cross tabulated. Results: A total of N=66 adaptations were identified. Adaptations occurred with the highest frequency during the grant preparation and after the pilot study. Most adaptations were led by both the academic institution and community partners. Content modifications were most common. Prominent reasons for adaptation included organization/setting time constraints and integrating community partners’ and interventionists’ feedback. Discussion: Study results align with the CBPR approach that guided the adaptation and the ELSC core tenet of integrating community partnerships throughout all aspects of the intervention. To efficiently track adaptations, consensus as to what constitutes varying levels of adaptation granularity (i.e., macro, meso, micro) is needed. While tracking adaptations can be time and resource intensive, tracking adaptations may support the development of strategies to tie adaptations to outcomes. Conclusion: It is critical to determine when adaptations are needed to avoid a “culture of adaptation hyperactivity”. There is an opportunity to analyze past and future ELSC adaptations to better understand the intervention’s core tenets and the relationship between adaptations and outcomes. Future ELSC adaptations would benefit from considering how to incorporate feedback from diverse stakeholders and populations in preparation for scaling.
ContributorsDiaz, Monica (Author) / Shaibi, Gabriel Q (Thesis advisor) / Bruening, Meg (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2024