Matching Items (6)
Filtering by

Clear all filters

151375-Thumbnail Image.png
Description
Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal

Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal women, such as FemhrtTM (Simon et al., 2003). Thus, EE is prescribed clinically to women at ages ranging from puberty through reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young, female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection. For these studies, the low and medium doses correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to the range of doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. For each study, cognition was evaluated with a battery of maze tasks tapping several domains of spatial learning and memory. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; this was seen for both cyclic and tonic regimens. Cyclic and tonic delivery of low EE, a dose that corresponds to doses used in the clinic today, resulted in transient and null impairments, respectively, on cognition.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Baxter, Leslie C. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2012
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
154212-Thumbnail Image.png
Description
Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on

Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on short- and long- term brain health. The goal of my dissertation was to understand how lifetime hormone exposures shape the female cognitive phenotype using several innovative approaches, including a new human spatial working memory task, the human radial arm maze (HRAM), and several rodent menopause models with variants of clinically used hormone treatments. Using the HRAM (chapter 2) and established human neuropsychological tests, I determined males outperformed females with high endogenous or exogenous estrogen levels on visuospatial tasks and the spatial working memory HRAM (chapter 3). Evaluating the synthetic estrogen in contraceptives, ethinyl estradiol (EE), I found a high EE dose impaired spatial working memory in ovariectomized (Ovx) rats, medium and high EE doses reduced choline-acetyltransferace-immunoreactive neuron population estimates in the basal forebrain following Ovx (chapter 4), and low EE impaired spatial cognition in ovary-intact rats (chapter 5). Assessing the impact of several clinically-used HTs, I identified a window of opportunity around ovarian follicular depletion outside of which the HT conjugated equine estrogens (CEE) was detrimental to spatial memory (chapter 6), as well as therapeutic potentials for synthetic contraceptive hormones (chapter 9) and bioidentical estradiol (chapter 7) during and after the transition to menopause. Chapter 6 and 7 findings, that estradiol and Ovx benefitted cognition after the menopause transition, but CEE did not, are perhaps due to the negative impact of ovarian-produced, androstenedione-derived estrone; indeed, blocking androstenedione’s conversion to estrone prevented its cognitive impairments (chapter 8). Finally, I determined that EE combined with the popular progestin levonorgestrel benefited spatial memory during the transition to menopause, a profile not seen with estradiol, levonorgestrel, or EE alone (chapter 9). This work identifies several cognitively safe, and enhancing, hormonal treatment options at different time points throughout female aging, revealing promising avenues toward optimizing female health.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona (Committee member) / Whiteaker, Paul (Committee member) / Talboom, Joshua (Committee member) / Arizona State University (Publisher)
Created2015
131245-Thumbnail Image.png
Description
Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.
ContributorsCusimano, Jason A (Author) / Sweazea, Karen (Thesis director) / Reaven, Peter (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05