Matching Items (5)
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
135556-Thumbnail Image.png
Description
Walking interventions focused on increasing step counts are typically associated with salutary effects on glycemia, fasting insulin, insulin resistance and blood lipids which may be in turn associated with improvements in cardiorespiratory fitness (peak oxygen uptake – VO2peak) and vascular stiffness. We hypothesized that a novel 4-month, behavioral economics-based walking

Walking interventions focused on increasing step counts are typically associated with salutary effects on glycemia, fasting insulin, insulin resistance and blood lipids which may be in turn associated with improvements in cardiorespiratory fitness (peak oxygen uptake – VO2peak) and vascular stiffness. We hypothesized that a novel 4-month, behavioral economics-based walking intervention would have favorable effects on glucose homeostasis and blood lipids and that these in turn would be related to VO2peak and vascular stiffness (carotid femoral pulse wave velocity – cfPWV).

We carried out secondary analyses on a subsample of sedentary, overweight/obese adults who participated in a 4-month, 2x2, randomized-controlled walking intervention examining the effects of goal setting (static v. adaptive goals) and rewards (immediate v. delayed) on steps/day (N=96). Fasting blood samples (n=58) were collected from participants before and after the intervention. Premenopausal females were in the follicular phase of their menstrual cycles. Lipid and glucose levels were measured using an automated chemistry analyzer, while insulin was measured using radio-immunoassay. Homeostatic model of insulin resistance (HOMA-IR) was calculated using the following formula (HOMA-IR=glucose x insulin / 405). We examined associations [partial correlations (adjusted for age)] between changes in blood biomarkers and VO2peak and cfPWV, irrespective of group, and we used linear mixed models to examine between-group differences in levels of and change in biomarker outcomes.

Groups did not differ in overall levels of, or degree of change in, biomarker outcomes (all p>0.05). Mean changes, irrespective of group, in biomarkers were as follows: glucose Δ= 0.74± 4.5mg/dl; insulin Δ= 0.09 ± 4.1 µU/ml; total cholesterol Δ= 0.24 ± 20.6 mg/dl; HDL-C Δ= 0.27 ± 5.1 mg/dl; LDL-C Δ= 1.3 ± 19.9 mg/dl; triglycerides Δ= 1.7 ± 27.2 mg/dl; HOMA-IR Δ = -.0548 ± 1.05). We found no significant associations between change in biomarker levels and change in VO2peak or change in cfPWV (all correlation coefficients < 0.15; p > 0.05).

A 4-month, behavioral economics-based mHealth intervention focused on increasing steps/day did not bring about favorable changes on markers of glycemia, insulin resistance and blood lipids.
ContributorsHook, Benjamin E. (Author) / Angadi, Siddhartha (Thesis director) / Gaesser, Glenn (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132124-Thumbnail Image.png
Description
As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both

As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both types of diabetes lead to increased glucose levels in the body if left untreated. This, in turn, leads to the development of a host of complications, one of which is ischemic heart disease. Accounting for the death of 16% of the world’s population, ischemic heart disease has been the leading cause of death since 2000. As of 2019, deaths from this disease have risen from 2 million to over 8.9 million globally. While medicine exists to counter the negative outcomes of diabetes mellitus, lower income nations suffer from the lack of availability and high costs of these medications. Therefore, this systematic review was performed to determine whether a non-medicinal treatment could provide similar therapeutic benefits for individuals with diabetes. Genistein is a phytoestrogen found in soy-based products, which has been potentially linked with preventing diabetes and improving diabetes-related symptoms such as hyperglycemia and abnormal insulin levels. We searched PubMed and SCOPUS using the terms ‘genistein’, ‘diabetes’, and ‘glucose’ and identified 32 peer-reviewed articles. In general, preclinical studies demonstrate that genistein decreases body weight as well as circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. It also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies of genistein in general reported no significant relationship between genistein and body mass, circulating glucose, serum insulin, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity, delay type 2 diabetes onset and improve serum triglyceride levels. In summary, preclinical and clinical studies suggest that genistein may help delay onset of type 2 diabetes and improve several symptoms associated with the disease. By translating these findings into clinical settings, genistein may offer a cost effective natural approach at mitigating complications associated with diabetes, although additional research is required to confirm these findings.
ContributorsJain, Rijul (Author) / Sweazea, Karen (Thesis director) / Al-Nakkash, Layla (Committee member) / Bolch, Charlotte (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-04-16
131245-Thumbnail Image.png
Description
Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.
ContributorsCusimano, Jason A (Author) / Sweazea, Karen (Thesis director) / Reaven, Peter (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05