Matching Items (10)
Filtering by

Clear all filters

136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136658-Thumbnail Image.png
Description
The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases

The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases of a double-bladed and single-bladed rotor have been run to investigate the causes and types of wake instabilities, as well as compare them to the short wave, long wave, and mutual inductance modes proposed by Widnall[2]. Evaluation of results revealed several perturbations appearing in both single and double-bladed wakes, the origin of which was unknown and difficult to trace. This made the computations not directly comparable to theoretical results, and drawing into question the physical flight conditions being modeled. Nonetheless, they displayed a wake structure highly sensitive to both computational and physical disturbances; thus extreme care must be taken in constructing grids and applying boundary conditions when doing wake computations to ensure results relevant to the complex and dynamic flight conditions of physical aircraft are generated.
ContributorsDrake, Nicholas Spencer (Author) / Wells, Valana (Thesis director) / Squires, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
148437-Thumbnail Image.png
Description

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid.

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid. The simulation results were compared against the experimentally derived Schiller-Naumann Correlation. Over the course of 36 trials, various spatial and temporal resolutions were tested at specific Reynolds numbers between 10 and 300. It was observed that numerical errors decreased with increasing spatial and temporal resolution. This result was expected as increased resolution should give results closer to experimental values. Having shown the accuracy and robustness of this method, KRG will continue to develop this algorithm to explore more complex geometries such as aircraft engines or human lungs.

ContributorsMadden, David Jackson (Author) / Kasbaoui, Mohamed Houssem (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131242-Thumbnail Image.png
Description
This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to turbulent flow. Each of these input parameters are tested for the NACA 0012 and SC-1095 airfoils to ensure that the accuracy is similar regardless of geometric complexity. The TACAA program was used to run all simulation testing, and its overall functionality is discussed. The results gathered from the preliminary testing showed that the spread of variable input data points caused data gaps in the transonic regime results, which provided motivation to conduct further testing within the transonic region for both airfoils. After collecting all TACAA results, data from wind tunnel testing was compiled to compare. The comparison showed that (1) additional testing would be necessary to fully assess the accuracy of the results for the SC-1095 airfoil and (2) TACAA is generally accurate for compressible, turbulent flows.
ContributorsKuang, Joyce (Co-author) / Stickel, Hannah (Co-author) / Wells, Valana (Thesis director) / Duque, Earl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132111-Thumbnail Image.png
Description
An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD)

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.
ContributorsNie, Alexander (Author) / Wells, Valana (Thesis director) / Huang, Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
134643-Thumbnail Image.png
Description
In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.
ContributorsTichacek, Louis Joseph (Author) / Huang, Huei-Ping (Thesis director) / Herrmann, Marcus (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
With the growth of the additive manufacturing (AM) industry for metal components, there is an economic pressure for improved AM processes to overcome the shortcomings of current AM technologies (i.e., limited deposition rates, surface roughness, etc.). Unfortunately, the development of these processes can be time and capital-intensive due to the large

With the growth of the additive manufacturing (AM) industry for metal components, there is an economic pressure for improved AM processes to overcome the shortcomings of current AM technologies (i.e., limited deposition rates, surface roughness, etc.). Unfortunately, the development of these processes can be time and capital-intensive due to the large number of input parameters and the sensitivity of the process’s outputs to said inputs. There consequently has been a strong push to develop computational design tools (such as CFD models) which can decrease the time and cost of AM technology developments. However, many of the developments that have been made to simulate AM through CFD have done so on custom CFD packages (as opposed to commercially available packages), which increases the barrier to entry of employing computational design tools. For that reason, this paper has demonstrated a method for simulating fused deposition modeling using a commercially available CFD package (Fluent). The results from this implementation are qualitatively promising when compared to samples produced by existing metal AM processes, however additional work is needed to validate the model more rigorously and to reduce the computational cost. Finally, the developed model was used to perform a parameter sweep, thereby demonstrating a use case of the tool to help in parameter optimization.
Created2024-05
193663-Thumbnail Image.png
Description
This dissertation presents a volume filtering framework to solve particle-laden flows. Particle-laden flows are studied, employing the well-established Euler-Lagrange method, using the point-particle approximation. This approach requires the filter width to be much larger than the particle diameter. The method assumes that the particle is smaller than the Kolmogorov length

This dissertation presents a volume filtering framework to solve particle-laden flows. Particle-laden flows are studied, employing the well-established Euler-Lagrange method, using the point-particle approximation. This approach requires the filter width to be much larger than the particle diameter. The method assumes that the particle is smaller than the Kolmogorov length scale. This thesis investigates how inertial particles at semi-dilute volume fractions modulate the flow characteristics for particles smaller than 1 in wall units, when dispersed within wall-bounded channel flows at friction Reynolds number of 180. The simulations are performed with 4 way coupling in order to account for high local concentration of particles, to capture mechanisms such as turbophoresis and preferential concentration. We show that drag attenuation or augmentation is determined by the particle inertia. As particle size is increased greater than 1 in wall units, the regime becomes finite-sized, requiring an interface-resolved description. To do this a novel Immersed Boundaries (IB) framework based on the concept of volume-filtering called the Volume-Filtered Immersed Boundary (VF-IB) method is presented. Transport equations are obtained by volume-filtering the Navier-Stokes equation and accounting for the stresses at the solid-fluid interface. Boundary conditions are transformed into bodyforces that appear as surface integrals on the right hand side of the filtered equation. The approach requires the filter width to be much smaller than the particle diameter in order to accurately resolve the interfacial dynamics. Several canonical tests are conducted for both stationary and moving immersed solids and report comparable results to the experimental and/or body-fitted simulations. Keep in mind, the VF-IB method reverts back to the Euler-Lagrange formulation if the filter width is significantly greater than the particle diameter. An artifact of volume-filtering is the emergence of unclosed terms we define as the sub-filter scale term. In order to characterize the contribution of this term on the solution, a more simpler case of a 2-D varying coefficient hyperbolic equation that has an exact solution is looked into. It is observed that the sub-filter scale term scales inversely with the square of the filter width. For fine interface resolution (i.e. small filter width), this value can be ignored with negligible effect to the accuracy of the numerical solution. However for coarse interface resolution (i.e. large filter width), including the sub-filter scale term significantly increases the accuracy of the numerical solution
ContributorsDave, Himanshu (Author) / Kasbaoui, Mohamed Houssem (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2024
193358-Thumbnail Image.png
Description
This dissertation investigates the complex dynamics of semi-dilute inertial particles suspended in vortices using the Eulerian-Lagrangian method. The study explores the modulation of flow induced by inertial particles, focusing on the characteristics of a single vortex, instability analysis within particle-laden flows, and the merging process of co-rotating vortices. Simulations reveal

This dissertation investigates the complex dynamics of semi-dilute inertial particles suspended in vortices using the Eulerian-Lagrangian method. The study explores the modulation of flow induced by inertial particles, focusing on the characteristics of a single vortex, instability analysis within particle-laden flows, and the merging process of co-rotating vortices. Simulations reveal a preferential concentration mechanism, where inertial particles cluster around a void fraction bubble, accelerating the decay of the vortex tube. Small-scale clusters, arising from particle-trajectory crossings, induce significant gradients in the fluid vorticity field, contributing to rapid vortex breakdown. Within a specific Stokes number range, increased particle inertia results in faster vortex decay and stronger inhomogeneity in the particle phase. The instability mechanism in particle-laden flows is explored using a Rankine vortex model. Two-way coupling triggers azimuthal perturbations, leading to the breakdown of the vortex structure. Linear Stability Analysis and Two-Fluid modeling demonstrate that the dusty vortex flow exhibits unstable modes, with growth rates increasing with wavenumber. Eulerian-Lagrangian simulations validate these results, showing excellent agreement between computed and predicted growth rates. The dissertation also delves into the co-rotating vortex merger in a semi-dilute dusty flow. For weak inertial effects, merger experiences a delay compared to particle-free vortices. Under moderate inertial conditions, the merger process exhibits repulsion, increased separation, and eventual convective merger stages. Highly inertial particles stretch the vortex core, initiating a merger with an outcome of a particle-free vortex core surrounded by a halo of concentrated particles. In conclusion, the feedback force from the dispersed phase induces instability and significantly influences the dynamics of vortices in particle-laden flows. The findings contribute to a deeper understanding of the intricate interactions between inertial particles and vortical structures.
ContributorsShuai, Shuai (Author) / Kasbaoui, Mohamed Houssem (Thesis advisor) / Herrmann, Marcus (Committee member) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2024
135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05