Matching Items (20)
Filtering by

Clear all filters

136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
137142-Thumbnail Image.png
Description
This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.
ContributorsGibson, Gaines Sullivan (Author) / Wells, Valana (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
131442-Thumbnail Image.png
Description
The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential

The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential which drives the flow. The nozzle was designed using method of characteristics (MOC) and a boundary layer analysis experimental proven on supersonic wind tunnels [5]. The diffuser was designed using the unique design features of this wind tunnel in combination with equations from Pope [7]. The pressure differential is achieved via a vacuum chamber behind the diffuser creating a pressure differential between the ambient air and the low pressure in the tank. The run time of the wind tunnel depends on the initial pressure of the vacuum tank and the volume. However, the volume of the tank has a greater influence on the run time. The volume of the tank is not specified as the largest tank feasible should be used to allow the longest run time. The run time for different volumes is given. Another method of extending the run duration is added vacuum pumps to the vacuum chamber. If these pumps can move a sufficient mass out of the vacuum chamber, the run time can be significantly extended. The mounting design addresses the loading requirements which is closely related to the accuracy of the data. The mounting mechanism is attached to the rear of the model to minimize shockwave interference and maximize the structural integrity along the direction with the highest loading. This mechanism is then mounted to the bottom of the wind tunnel for structural rigidity and ease of access.
ContributorsWall, Isaiah Edward (Author) / Wells, Valana (Thesis director) / Kshitij, Abhinav (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131374-Thumbnail Image.png
Description
This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.
ContributorsDeorio, Jordan Anthony (Author) / Solanki, Kiran (Thesis director) / Rajagopalan, Jagannathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131242-Thumbnail Image.png
Description
This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to turbulent flow. Each of these input parameters are tested for the NACA 0012 and SC-1095 airfoils to ensure that the accuracy is similar regardless of geometric complexity. The TACAA program was used to run all simulation testing, and its overall functionality is discussed. The results gathered from the preliminary testing showed that the spread of variable input data points caused data gaps in the transonic regime results, which provided motivation to conduct further testing within the transonic region for both airfoils. After collecting all TACAA results, data from wind tunnel testing was compiled to compare. The comparison showed that (1) additional testing would be necessary to fully assess the accuracy of the results for the SC-1095 airfoil and (2) TACAA is generally accurate for compressible, turbulent flows.
ContributorsKuang, Joyce (Co-author) / Stickel, Hannah (Co-author) / Wells, Valana (Thesis director) / Duque, Earl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132168-Thumbnail Image.png
Description
During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The second being a capstone project based out of Arizona State’s design school:
Innovation

During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The second being a capstone project based out of Arizona State’s design school:
Innovation Space. The purpose of this dual enrollment was to compare and contrast the two product development projects,
in hopes to recommend a course of action to engineers younger than myself who are presented the option of multiple
capstones. This report will elaborate on three areas of engineering design and how they were realized in these projects.
These 3 topics are product development and its effect on design to manufacture, design feature creep, and technical vs
non-technical design. After considering the pros and cons of both capstone projects and their relation to the three main
topics of this report, it was decided that individuals who are motivated to become the best engineers they can be upon
graduating from an undergraduate program, they should find the time to take both capstone courses. Both Design of
Autonomous Aircraft Systems and Innovation Space present opportunities to create new ways of engineering thinking, all
of which will be necessary for an engineer to succeed in his/her first years in industry.
ContributorsEll, Samuel Leo (Author) / Hedges, Craig (Thesis director) / Kuhn, Anthony (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133491-Thumbnail Image.png
Description
Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the satellite's Attitude Determination and Control System, or ADCS, must be properly tested and calibrated on the ground to ensure that it performs to its requirements. A commercial ADCS unit, the MAI-400, has been selected for this mission. The expected environmental disturbances must be characterized and modeled in order to inform planning the operations of this system. Appropriate control gains must also be selected to ensure the optimal satellite response. These gains are derived through a system model in Simulink and its response optimization tool, and these gains are then tested in a supplier provided Dynamic Simulator.
ContributorsWofford, Justin Michael (Author) / Bowman, Judd (Thesis director) / Jacobs, Daniel (Committee member) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05