Matching Items (5)
Filtering by

Clear all filters

152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014
135148-Thumbnail Image.png
Description
\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no other programming language is. Building on the principles of Assembly level efficiency, referential integrity, and high order functionality, this language is able to produce extremely efficient code; meanwhile, programmatically defined English-based reusable syntax and a strong, static type system make \English easier to read and write than many existing programming languages. Its generalization of all language structures and components to operators leaves the language syntax open to project-specific syntactical structuring, making it more easily applicable in more cases. The thesis project requirements came in three parts: a compiler to compile \English code into NASM Assembly to produce a final program product; a standard library to define many of the basic operations of the language, including the creation of lists; and C translation library that would utilize \English properties to compile C code using the \English compiler. Though designed and partially coded, the compiler remains incomplete. The standard library, C translation library, and design of the language were completed. Additional tools regarding the language design and implementation were also created, including a Gedit syntax highlighting configuration file; usage documentation describing in a tutorial style the basic usage of the language; and more. Though the thesis project itself may be complete, the \English project will continue in order to produce a new language capable of the abilities possible with the design of this language.
ContributorsDavey, Connor (Author) / Gupta, Sandeep (Thesis director) / Bazzi, Rida (Committee member) / Calliss, Debra (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
155679-Thumbnail Image.png
Description
Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has

Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.
ContributorsThyagaturu, Akhilesh Thyagaturu (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Zhang, Yanchao (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2017
165085-Thumbnail Image.png
Description
Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.
ContributorsHer, Zachary (Author) / Walker, Elizabeth (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165086-Thumbnail Image.png
Description

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.

ContributorsWalker, Elizabeth (Author) / Her, Zachary (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05