Matching Items (3)

131235-Thumbnail Image.png

A Two-Way Pushdown Automaton for the Lua Language

Description

A two-way deterministic finite pushdown automaton ("2PDA") is developed for the Lua language. This 2PDA is evaluated against both a purpose-built Lua syntax test suite and the test suite used by the reference implementation of Lua, and fully passes both.

Contributors

Agent

Created

Date Created
  • 2020-05

135148-Thumbnail Image.png

\English

Description

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no other programming language is. Building on the principles of Assembly level efficiency, referential integrity, and high order functionality, this language is able to produce extremely efficient code; meanwhile, programmatically defined English-based reusable syntax and a strong, static type system make \English easier to read and write than many existing programming languages. Its generalization of all language structures and components to operators leaves the language syntax open to project-specific syntactical structuring, making it more easily applicable in more cases. The thesis project requirements came in three parts: a compiler to compile \English code into NASM Assembly to produce a final program product; a standard library to define many of the basic operations of the language, including the creation of lists; and C translation library that would utilize \English properties to compile C code using the \English compiler. Though designed and partially coded, the compiler remains incomplete. The standard library, C translation library, and design of the language were completed. Additional tools regarding the language design and implementation were also created, including a Gedit syntax highlighting configuration file; usage documentation describing in a tutorial style the basic usage of the language; and more. Though the thesis project itself may be complete, the \English project will continue in order to produce a new language capable of the abilities possible with the design of this language.

Contributors

Agent

Created

Date Created
  • 2016-05

156331-Thumbnail Image.png

Graph Search as a Feature in Imperative/Procedural Programming Languages

Description

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research.

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Contributors

Agent

Created

Date Created
  • 2018