Matching Items (5)
Filtering by

Clear all filters

154630-Thumbnail Image.png
Description
There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment

There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment finds wide range of application in motor control, health-care, rehabilitation and physical therapy. Home-based interactive physical therapy requires the ability to monitor, inform and assess the quality of everyday movements. Obtaining labeled data from trained therapists/experts is the main limitation, since it is both expensive and time consuming.

Motivated by recent studies in motor control and therapy, in this thesis an existing computational framework is used to assess balance impairment and disease severity in people suffering from Parkinson's disease. The framework uses high-dimensional shape descriptors of the reconstructed phase space, of the subjects' center of pressure (CoP) tracings while performing dynamical postural shifts. The performance of the framework is evaluated using a dataset collected from 43 healthy and 17 Parkinson's disease impaired subjects, and outperforms other methods, such as dynamical shift indices and use of chaotic invariants, in assessment of balance impairment.

In this thesis, an unsupervised method is also proposed that measures movement quality assessment of simple actions like sit-to-stand and dynamic posture shifts by modeling the deviation of a given movement from an ideal movement path in the configuration space, i.e. the quality of movement is directly related to similarity to the ideal trajectory, between the start and end pose. The S^1xS^1 configuration space was used to model the interaction of two joint angles in sit-to-stand actions, and the R^2 space was used to model the subject's CoP while performing dynamic posture shifts for application in movement quality estimation.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016
155748-Thumbnail Image.png
Description
Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait

Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait patterns purely based on glide reflection. A Gliding symmetry score is calculated from the data obtained from Motion Capture(MoCap) system. Six primary joints (Shoulder, Elbow, Palm, Hip, Knee, Foot) are considered for this study. Two dierent abnormalities were chosen and studied carefully. All the two gaits were mimicked in controlled environment. The framework proposed clearly showed that it could distinguish the abnormal gaits from the ordinary walking patterns. This framework can be widely used by the doctors and physical therapists for kinematics analysis, bio-mechanics, motion capture research, sports medicine and physical therapy, including human gait analysis and injury rehabilitation.
ContributorsPotaraju, Chaitanya Prakash (Author) / Turaga, Pavan Kumar (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017
154384-Thumbnail Image.png
Description
Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.

The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.
ContributorsVenkataraman, Vinay (Author) / Turaga, Pavan (Thesis advisor) / Papandreou-Suppappol, Antonia (Committee member) / Krishnamurthi, Narayanan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016
158817-Thumbnail Image.png
Description
Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units.

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is very difficult to gather such data in a real-world setting. For example, in certain medical/healthcare applications, it is very challenging to have access to data from all possible scenarios or with the necessary amount of variations as required to train the system. Additionally, the over-parameterized and unconstrained nature of deep neural networks can cause them to be poorly trained and in many cases over-confident which, in turn, can hamper their reliability and generalizability. This dissertation is a compendium of my research efforts to address the above challenges. I propose building invariant feature representations by wedding concepts from topological data analysis and Riemannian geometry, that automatically incorporate the desired invariance properties for different computer vision applications. I discuss how deep learning can be used to address some of the common challenges faced when working with topological data analysis methods. I describe alternative learning strategies based on unsupervised learning and transfer learning to address issues like dataset shifts and limited training data. Finally, I discuss my preliminary work on applying simple orthogonal constraints on deep learning feature representations to help develop more reliable and better calibrated models.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
158436-Thumbnail Image.png
Description
The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has

The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII)

In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:

• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?

• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?

• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?

The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
ContributorsTadayon, Arash (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Krishnamurthi, Narayanan (Committee member) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020