Matching Items (12)
Filtering by

Clear all filters

149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
149382-Thumbnail Image.png
Description
Today, many wireless networks are single-channel systems. However, as the interest in wireless services increases, the contention by nodes to occupy the medium is more intense and interference worsens. One direction with the potential to increase system throughput is multi-channel systems. Multi-channel systems have been shown to reduce collisions and

Today, many wireless networks are single-channel systems. However, as the interest in wireless services increases, the contention by nodes to occupy the medium is more intense and interference worsens. One direction with the potential to increase system throughput is multi-channel systems. Multi-channel systems have been shown to reduce collisions and increase concurrency thus producing better bandwidth usage. However, the well-known hidden- and exposed-terminal problems inherited from single-channel systems remain, and a new channel selection problem is introduced. In this dissertation, Multi-channel medium access control (MAC) protocols are proposed for mobile ad hoc networks (MANETs) for nodes equipped with a single half-duplex transceiver, using more sophisticated physical layer technologies. These include code division multiple access (CDMA), orthogonal frequency division multiple access (OFDMA), and diversity. CDMA increases channel reuse, while OFDMA enables communication by multiple users in parallel. There is a challenge to using each technology in MANETs, where there is no fixed infrastructure or centralized control. CDMA suffers from the near-far problem, while OFDMA requires channel synchronization to decode the signal. As a result CDMA and OFDMA are not yet widely used. Cooperative (diversity) mechanisms provide vital information to facilitate communication set-up between source-destination node pairs and help overcome limitations of physical layer technologies in MANETs. In this dissertation, the Cooperative CDMA-based Multi-channel MAC (CCM-MAC) protocol uses CDMA to enable concurrent transmissions on each channel. The Power-controlled CDMA-based Multi-channel MAC (PCC-MAC) protocol uses transmission power control at each node and mitigates collisions of control packets on the control channel by using different sizes of the spreading factor to have different processing gains for the control signals. The Cooperative Dual-access Multi-channel MAC (CDM-MAC) protocol combines the use of OFDMA and CDMA and minimizes channel interference by a resolvable balanced incomplete block design (BIBD). In each protocol, cooperating nodes help reduce the incidence of the multi-channel hidden- and exposed-terminal and help address the near-far problem of CDMA by supplying information. Simulation results show that each of the proposed protocols achieve significantly better system performance when compared to IEEE 802.11, other multi-channel protocols, and another protocol CDMA-based.
ContributorsMoon, Yuhan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Huang, Dijiang (Committee member) / Reisslein, Martin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2010
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
157077-Thumbnail Image.png
Description
Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each

Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each other, forming a more complex network model called multi-layered networks.

Among the various aspects of network studies, network connectivity plays an important role in a myriad of applications. The diversified application areas have spurred numerous connectivity measures, each designed for some specific tasks. Although effective in their own fields, none of the connectivity measures is generally applicable to all the tasks. Moreover, existing connectivity measures are predominantly based on single-layered networks, with few attempts made on multi-layered networks.

Most connectivity analyzing methods assume that the input network is static and accurate, which is not realistic in many applications. As real-world networks are evolving, their connectivity scores would vary by time as well, making it imperative to keep track of those changing parameters in a timely manner. Furthermore, as the observed links in the input network may be inaccurate due to noise and incomplete data sources, it is crucial to infer a more accurate network structure to better approximate its connectivity scores.

The ultimate goal of connectivity studies is to optimize the connectivity scores via manipulating the network structures. For most complex measures, the hardness of the optimization problem still remains unknown. Meanwhile, current optimization methods are mainly ad-hoc solutions for specific types of connectivity measures on single-layered networks. No optimization framework has ever been proposed to tackle a wider range of connectivity measures on complex networks.

In this thesis, an in-depth study of connectivity measures, inference, and optimization problems will be proposed. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity inference aspect, an effective network inference method and connectivity tracking framework will be described. Last, a generalized optimization framework will be built to address the connectivity minimization/maximization problems on both single-layered and multi-layered networks.
ContributorsChen, Chen (Author) / Tong, Hanghang (Thesis advisor) / Davulcu, Hasan (Committee member) / Sen, Arunabha (Committee member) / Subrahmanian, V.S. (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2019
154660-Thumbnail Image.png
Description
The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems.

Revealing the underlying structure and dynamics of complex networked systems from observed data without of any specific prior information is of fundamental importance to science, engineering, and society. We articulate a Markov network based model, the sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator based on techniques including compressive sensing and K-means algorithm. It recovers the network structure of the original system and predicts its short-term or even long-term dynamical behavior for a large variety of representative dynamical processes on model and real-world complex networks.

One of the most challenging problems in complex dynamical systems is to control complex networks.

Upon finding that the energy required to approach a target state with reasonable precision

is often unbearably large, and the energy of controlling a set of networks with similar structural properties follows a fat-tail distribution, we identify fundamental structural ``short boards'' that play a dominant role in the enormous energy and offer a theoretical interpretation for the fat-tail distribution and simple strategies to significantly reduce the energy.

Extreme events and cascading failure, a type of collective behavior in complex networked systems, often have catastrophic consequences. Utilizing transportation and evolutionary game dynamics as prototypical

settings, we investigate the emergence of extreme events in simplex complex networks, mobile ad-hoc networks and multi-layer interdependent networks. A striking resonance-like phenomenon and the emergence of global-scale cascading breakdown are discovered. We derive analytic theories to understand the mechanism of

control at a quantitative level and articulate cost-effective control schemes to significantly suppress extreme events and the cascading process.
ContributorsChen, Yuzhong (Author) / Lai, Ying-Cheng (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2016
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
155032-Thumbnail Image.png
Description
We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.

The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.

The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.
ContributorsMazumder, Anisha (Author) / Sen, Arunabha (Thesis advisor) / Richa, Andrea (Committee member) / Xue, Guoliang (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2016
153686-Thumbnail Image.png
Description
A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.
ContributorsGong, Xiaowen (Author) / Zhang, Junshan (Thesis advisor) / Cochran, Douglas (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
155244-Thumbnail Image.png
Description
Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.
ContributorsSun, Jingchao (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2017
155665-Thumbnail Image.png
Description
Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues,

Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions.

The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, the first crowdsourced spectrum-misuse detection framework for DSA systems. In SpecGuard, three novel schemes are proposed for embedding and detecting a spectrum permit at the physical layer. Chapter Three proposes SafeDSA, a novel PHY-based scheme utilizing temporal features for authenticating secondary users. In SafeDSA, the secondary user embeds his spectrum authorization into the cyclic prefix of each physical-layer symbol, which can be detected and authenticated by a verifier.

The second part also consists of three chapters, with a focus on crowdsourced spectrum sensing (CSS) with privacy consideration. CSS allows a spectrum sensing provider (SSP) to outsource the spectrum sensing to distributed mobile users. Without strong incentives and location-privacy protection in place, however, mobile users are reluctant to act as crowdsourcing workers for spectrum-sensing tasks. Chapter Four gives an overview of the challenges and existing solutions. Chapter Five presents PriCSS, where the SSP selects participants based on the exponential mechanism such that the participants' sensing cost, associated with their locations, are privacy-preserved. Chapter Six further proposes DPSense, a framework that allows the honest-but-curious SSP to select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile users. By collecting perturbed location traces with differential privacy guarantee from participants, the SSP assigns spectrum-sensing tasks to participants with the consideration of both spatial and temporal factors.

Through theoretical analysis and simulations, the efficacy and effectiveness of the proposed schemes are validated.
ContributorsJin, Xiaocong (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2017