Matching Items (42)
Filtering by

Clear all filters

151963-Thumbnail Image.png
Description
Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a training corpus of sentences with their translations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various components of it to make it usable for somewhat substantial and useful interface languages. We revamped the lexicon learning components, Inverse-lambda and Generalization modules, and redesigned the lexicon learning algorithm which uses these components to learn new meanings of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Programming (ASP) and also integrated external parser with the system. Apart from this, we added some new rich features like various system configurations and memory cache in the learning component of the NL2KR system. These enhancements helped in learning more meanings of the words, boosted performance of the system by reducing the computation time by a factor of 8 and improved the usability of the system. We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data system, which helps in managing large set of computer files using policies. This system provides a Rule-Oriented interface langauge whose syntactic structure is like any procedural programming language (eg. C). However, direct translation of natural language (NL) to this interface language is difficult. So, for automatic translation of NL to this language, we define a simple intermediate Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can be directly translated to iRODS rules. We develop a corpus of 100 policy statements and manually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR system. We performed 10 fold cross validation on the system. Furthermore, using this corpus, we illustrate how different components of our NL2KR system work.
ContributorsKumbhare, Kanchan Ravishankar (Author) / Baral, Chitta (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2013
152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
ContributorsBoyd, Jeffrey Michael (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Shrivastava, Aviral (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
153022-Thumbnail Image.png
Description
In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control

In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and orientation from coplanar point correspondences. This thesis discusses current ideas and proposes new methods for the three challenges mentioned. In the end, a working prototype is produced.
ContributorsWalker, Collin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, David (Committee member) / Arizona State University (Publisher)
Created2014
153404-Thumbnail Image.png
Description
Splicing of digital images is a powerful form of tampering which transports regions of an image to create a composite image. When used as an artistic tool, this practice is harmless but when these composite images can be used to create political associations or are submitted as evidence in the

Splicing of digital images is a powerful form of tampering which transports regions of an image to create a composite image. When used as an artistic tool, this practice is harmless but when these composite images can be used to create political associations or are submitted as evidence in the judicial system they become more impactful. In these cases, distinction between an authentic image and a tampered image can become important.

Many proposed approaches to image splicing detection follow the model of extracting features from an authentic and tampered dataset and then classifying them using machine learning with the goal of optimizing classification accuracy. This thesis approaches splicing detection from a slightly different perspective by choosing a modern splicing detection framework and examining a variety of preprocessing techniques along with their effect on classification accuracy. Preprocessing techniques explored include Joint Picture Experts Group (JPEG) file type block line blurring, image level blurring, and image level sharpening. Attention is also paid to preprocessing images adaptively based on the amount of higher frequency content they contain.

This thesis also recognizes an identified problem with using a popular tampering evaluation dataset where a mismatch in the number of JPEG processing iterations between the authentic and tampered set creates an unfair statistical bias, leading to higher detection rates. Many modern approaches do not acknowledge this issue but this thesis applies a quality factor equalization technique to reduce this bias. Additionally, this thesis artificially inserts a mismatch in JPEG processing iterations by varying amounts to determine its effect on detection rates.
ContributorsGubrud, Aaron (Author) / Li, Baoxin (Thesis advisor) / Candan, Kasim (Committee member) / Kadi, Zafer (Committee member) / Arizona State University (Publisher)
Created2015
150112-Thumbnail Image.png
Description
Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For movies, visual content has been made accessible to visually impaired viewers through audio descriptions -- an additional narration that describes scenes, the characters involved and other pertinent details. However, as audio descriptions should not overlap with dialogue, sound effects and musical scores, there is limited time to convey information, often resulting in stunted and abridged descriptions that leave out many important visual cues and concepts. This work proposes a promising multimodal approach to sensory substitution for movies by providing complementary information through haptics, pertaining to the positions and movements of actors, in addition to a film's audio description and audio content. In a ten-minute presentation of five movie clips to ten individuals who were visually impaired or blind, the novel methodology was found to provide an almost two time increase in the perception of actors' movements in scenes. Moreover, participants appreciated and found useful the overall concept of providing a visual perspective to film through haptics.
ContributorsViswanathan, Lakshmie Narayan (Author) / Panchanathan, Sethuraman (Thesis advisor) / Hedgpeth, Terri (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
151028-Thumbnail Image.png
Description
In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can

In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of such problems which take into account the geometry of the manifold and maintain the favorable properties of the exact approach. This problem has several applications in areas of human activity discovery and recognition, where several features and representations are naturally studied in a non-Euclidean setting. We propose a novel solution to the problem of indexing manifold-valued sequences by proposing an intrinsic approach to map sequences to a symbolic representation. This is shown to enable the deployment of fast and accurate algorithms for activity recognition, motif discovery, and anomaly detection. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. Experiments show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The proposed methods are ideally suited for real-time systems and resource constrained scenarios.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2012