Matching Items (3)
Filtering by

Clear all filters

157065-Thumbnail Image.png
Description
The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these

The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these methods are capable of detecting the salient objects in the scene when constraining the number of proposals that can be generated due to constraints on timing or computations during execution. Salient objects are objects that tend to be more fixated by human subjects. The detection of salient objects is important in applications such as image collection browsing, image display on small devices, and perceptual compression.

This thesis proposes a novel evaluation framework that analyses the performance of popular existing object proposal generators in detecting the most salient objects. This work also shows that, by incorporating saliency constraints, the number of generated object proposals and thus the computational cost can be decreased significantly for a target true positive detection rate (TPR).

As part of the proposed framework, salient ground-truth masks are generated from the given original ground-truth masks for a given dataset. Given an object detection dataset, this work constructs salient object location ground-truth data, referred to here as salient ground-truth data for short, that only denotes the locations of salient objects. This is obtained by first computing a saliency map for the input image and then using it to assign a saliency score to each object in the image. Objects whose saliency scores are sufficiently high are referred to as salient objects. The detection rates are analyzed for existing object proposal generators with respect to the original ground-truth masks and the generated salient ground-truth masks.

As part of this work, a salient object detection database with salient ground-truth masks was constructed from the PASCAL VOC 2007 dataset. Not only does this dataset aid in analyzing the performance of existing object detectors for salient object detection, but it also helps in the development of new object detection methods and evaluating their performance in terms of successful detection of salient objects.
ContributorsKotamraju, Sai Prajwal (Author) / Karam, Lina J (Thesis advisor) / Yu, Hongbin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
158675-Thumbnail Image.png
Description
Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance

Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance electronics. The interconnects available in the market today only satisfy a few of the desirable characteristics, making it necessary to compromise one feature over another. In this thesis, a method to prepare a thin, flexible, and stretchable inter-connect is presented with improved conductivity compared to previous achievements. It satisfies most mechanical and electrical conditions desired in the wearable electronics industry. The conducting composite, prepared with the widely available, low cost silicon-based organic polymer - polydimethylsiloxane (PDMS) and silver (Ag), is sandwiched between two cured PDMS layers. These protective layers improve the mechanical stability of the inter-connect. The structure can be stretched up to 120% of its original length which can further be enhanced to over 250% by cutting it into a serpentine shape without compromising its electrical stability. The inter-connect, around 500 µm thick, can be integrated into thin electronic packaging. The synthesis process of the composite material, along with its electrical and mechanical and properties are presented in detail. Testing methods and results for mechanical and electrical stability are also illustrated over extensive flexing and stretching cycles. The materials put into test, along with conductive silver (Ag) - polydimethylsiloxane (PDMS) composite in a sandwich structure, are copper foils, copper coated polyimide (PI) and aluminum (Al) coated polyethylene terephthalate (PET).
ContributorsNandy, Mayukh (Author) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020
161987-Thumbnail Image.png
Description
Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with

Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with a cost of high computation, which invariably increases power usage and cost of the hardware. In this thesis we explore applications of ML techniques, applied to two completely different fields - arts, media and theater and urban climate research using low-cost and low-powered edge devices. The multi-modal chatbot uses different machine learning techniques: natural language processing (NLP) and computer vision (CV) to understand inputs of the user and accordingly perform in the play and interact with the audience. This system is also equipped with other interactive hardware setups like movable LED systems, together they provide an experiential theatrical play tailored to each user. I will discuss how I used edge devices to achieve this AI system which has created a new genre in theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological system that calculates mean radiant temperature (MRT), which is an important parameter for urban climate research. It is also equipped with a vision system that performs different machine learning tasks like pedestrian and shade detection. The entire system costs around $200 which can potentially replace the existing setup worth $20,000. I will further discuss how I overcame the inaccuracies in MRT value caused by the system, using machine learning methods. These projects although belonging to two very different fields, are implemented using edge devices and use similar ML techniques. In this thesis I will detail out different techniques that are shared between these two projects and how they can be used in several other applications using edge devices.
ContributorsKulkarni, Karthik Kashinath (Author) / Jayasuriya, Suren (Thesis advisor) / Middel, Ariane (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021