Matching Items (23)
Filtering by

Clear all filters

152886-Thumbnail Image.png
Description
As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems which can make intelligent decisions on the transmission mode usage and power allocation to these modes becomes relevant in the current scenario, where the need for performance far exceeds the cost expendable on hardware. The effect of adding multiple antennas at either ends will be examined, the capacity of such systems and of networks comprised of many such participants will be evaluated. Methods of simulating said networks, and ways to achieve better performance by making intelligent transmission decisions will be proposed. Finally, a way of access control closer to the physical layer (a 'statistical MAC') and a possible metric to be used for such a MAC is suggested.
ContributorsThontadarya, Niranjan (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2014
154168-Thumbnail Image.png
Description
This thesis studies recommendation systems and considers joint sampling and learning. Sampling in recommendation systems is to obtain users' ratings on specific items chosen by the recommendation platform, and learning is to infer the unknown ratings of users to items given the existing data. In this thesis, the problem is

This thesis studies recommendation systems and considers joint sampling and learning. Sampling in recommendation systems is to obtain users' ratings on specific items chosen by the recommendation platform, and learning is to infer the unknown ratings of users to items given the existing data. In this thesis, the problem is formulated as an adaptive matrix completion problem in which sampling is to reveal the unknown entries of a $U\times M$ matrix where $U$ is the number of users, $M$ is the number of items, and each entry of the $U\times M$ matrix represents the rating of a user to an item. In the literature, this matrix completion problem has been studied under a static setting, i.e., recovering the matrix based on a set of partial ratings. This thesis considers both sampling and learning, and proposes an adaptive algorithm. The algorithm adapts its sampling and learning based on the existing data. The idea is to sample items that reveal more information based on the previous sampling results and then learn based on clustering. Performance of the proposed algorithm has been evaluated using simulations.
ContributorsZhu, Lingfang (Author) / Xue, Guoliang (Thesis advisor) / He, Jingrui (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2015
154174-Thumbnail Image.png
Description
The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously

for capturing different aspects of the real world attributes has also led to an increase in

The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously

for capturing different aspects of the real world attributes has also led to an increase in dimensionality from uni-variate to multi-variate time series. This has facilitated richer data representation but also has necessitated algorithms determining similarity between two multi-variate time series for search and analysis.

Various algorithms have been extended from uni-variate to multi-variate case, such as multi-variate versions of Euclidean distance, edit distance, dynamic time warping. However, it has not been studied how these algorithms account for asynchronous in time series. Human gestures, for example, exhibit asynchrony in their patterns as different subjects perform the same gesture with varying movements in their patterns at different speeds. In this thesis, we propose several algorithms (some of which also leverage metadata describing the relationships among the variates). In particular, we present several techniques that leverage the contextual relationships among the variates when measuring multi-variate time series similarities. Based on the way correlation is leveraged, various weighing mechanisms have been proposed that determine the importance of a dimension for discriminating between the time series as giving the same weight to each dimension can led to misclassification. We next study the robustness of the considered techniques against different temporal asynchronies, including shifts and stretching.

Exhaustive experiments were carried on datasets with multiple types and amounts of temporal asynchronies. It has been observed that accuracy of algorithms that rely on data to discover variate relationships can be low under the presence of temporal asynchrony, whereas in case of algorithms that rely on external metadata, robustness against asynchronous distortions tends to be stronger. Specifically, algorithms using external metadata have better classification accuracy and cluster separation than existing state-of-the-art work, such as EROS, PCA, and naive dynamic time warping.
ContributorsGarg, Yash (Author) / Candan, Kasim Selcuk (Thesis advisor) / Chowell-Punete, Gerardo (Committee member) / Tong, Hanghang (Committee member) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Arizona State University (Publisher)
Created2015
153901-Thumbnail Image.png
Description
Micro-blogging platforms like Twitter have become some of the most popular sites for people to share and express their views and opinions about public events like debates, sports events or other news articles. These social updates by people complement the written news articles or transcripts of events in giving the

Micro-blogging platforms like Twitter have become some of the most popular sites for people to share and express their views and opinions about public events like debates, sports events or other news articles. These social updates by people complement the written news articles or transcripts of events in giving the popular public opinion about these events. So it would be useful to annotate the transcript with tweets. The technical challenge is to align the tweets with the correct segment of the transcript. ET-LDA by Hu et al [9] addresses this issue by modeling the whole process with an LDA-based graphical model. The system segments the transcript into coherent and meaningful parts and also determines if a tweet is a general tweet about the event or it refers to a particular segment of the transcript. One characteristic of the Hu et al’s model is that it expects all the data to be available upfront and uses batch inference procedure. But in many cases we find that data is not available beforehand, and it is often streaming. In such cases it is infeasible to repeatedly run the batch inference algorithm. My thesis presents an online inference algorithm for the ET-LDA model, with a continuous stream of tweet data and compare their runtime and performance to existing algorithms.
ContributorsAcharya, Anirudh (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2015
156193-Thumbnail Image.png
Description
With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable

With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information.

A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single seed node via it’s ego-centric network (AttriPart algorithm); (2) pathway identification between two seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR) algorithm); and (3) tree detection, defining the interaction between three or more seed nodes (Shortest Path MST algorithm).

In an effort to address both fundamental and applied research issues, we have developed the LocalForcasting algorithm to explore how network connectivity analysis can be applied to local community evolution and recommender systems. The goal is to apply the LocalForecasting algorithm to various domains---e.g., friend suggestions in social networks or future collaboration in co-authorship networks. This algorithm utilizes link prediction in combination with the AttriPart algorithm to predict future connections in local graph partitions.

Results show that our proposed AttriPart algorithm finds up to 1.6x denser local partitions, while running approximately 43x faster than traditional local partitioning techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demonstrates a significant improvement in the number of nodes and edges correctly predicted over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate a speed-up of up to 2.5x the standard k-simple shortest paths algorithm.
ContributorsFreitas, Scott (Author) / Tong, Hanghang (Thesis advisor) / Maciejewski, Ross (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
155923-Thumbnail Image.png
Description
Online learning platforms such as massive online open courses (MOOCs) and

intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in

Online learning platforms such as massive online open courses (MOOCs) and

intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in learning.

This thesis attempts to mine students’ working patterns using a programming problem solving system, and build predictive models to estimate students’ learning. QuizIT, a programming solving system, was used to collect students’ problem-solving activities from a lower-division computer science programming course in 2016 Fall semester. Differential mining techniques were used to extract frequent patterns based on each activity provided details about question’s correctness, complexity, topic, and time to represent students’ behavior. These patterns were further used to build classifiers to predict students’ performances.

Seven main learning behaviors were discovered based on these patterns, which provided insight into students’ metacognitive skills and thought processes. Besides predicting students’ performance group, the classification models also helped in finding important behaviors which were crucial in determining a student’s positive or negative performance throughout the semester.
ContributorsMandal, Partho Pratim (Author) / Hsiao, I-Han (Thesis advisor) / Davulcu, Hasan (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2017
156577-Thumbnail Image.png
Description
Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure

Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure networks, multi-platform social networks, cross-domain collaboration networks, and many more. Compared with single-sourced network, multi-sourced networks bear more complex structures and therefore could potentially contain more valuable information.

This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algorithm to perform the ranking task on multi-sourced networks. Specifically, each node in the network receives an authority score and a hub score for evaluating the value of the node itself and the value of its outgoing links respectively. Based on a recent multi-layered network model, which allows more flexible dependency structure across different sources (i.e., layers), the proposed algorithm leverages both within-layer smoothness and cross-layer consistency. This essentially allows nodes from different layers to be ranked accordingly. The multi-layered HITS is formulated as a regularized optimization problem with non-negative constraint and solved by an iterative update process. Extensive experimental evaluations demonstrate the effectiveness and explainability of the proposed algorithm.
ContributorsYu, Haichao (Author) / Tong, Hanghang (Thesis advisor) / He, Jingrui (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
156468-Thumbnail Image.png
Description
With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
ContributorsSistla, Ragini (Author) / Zhao, Ming (Thesis advisor, Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
156610-Thumbnail Image.png
Description
Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model.

This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. Specifically, it obtains optimal setting of 2-bit weight and 2-bit activation coupled with 4X structured compression by performing combined exploration of quantization and structured compression settings. The optimal DNN model achieves 50X weight memory reduction compared to floating-point uncompressed DNN. This memory saving is significant since applying only structured sparsity constraints achieves 2X memory savings and only quantization constraints achieves 16X memory savings. The algorithm has been validated on both high and low capacity DNNs and on wide-sparse and deep-sparse DNN models. Experiments demonstrated that deep-sparse DNN outperforms shallow-dense DNN with varying level of memory savings depending on DNN precision and sparsity levels. This work further proposed a Pareto-optimal approach to systematically extract optimal DNN models from a huge set of sparse and dense DNN models. The resulting 11 optimal designs were further evaluated by considering overall DNN memory which includes activation memory and weight memory. It was found that there is only a small change in the memory footprint of the optimal designs corresponding to the low sparsity DNNs. However, activation memory cannot be ignored for high sparsity DNNs.
ContributorsSrivastava, Gaurav (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156971-Thumbnail Image.png
Description
Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present memory-augmented neural networks that synthesize robot navigation policies which a) encode long-term temporal dependencies b) make decisions in

partially observed environments and c) quantify the uncertainty inherent in the task.

We extract information about the temporal structure of a task via imitation learning

from human demonstration and evaluate the performance of the models on control

policies for a robot navigation task. Experiments are performed in partially observed

environments in both simulation and the real world
ContributorsSrivatsav, Nambi (Author) / Ben Amor, Hani (Thesis advisor) / Srivastava, Siddharth (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018