Matching Items (3)
Filtering by

Clear all filters

153834-Thumbnail Image.png
Description
First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns

First, in a large-scale structure, a 3-D CFD model was built to simulate flow and temperature distributions. The flow patterns and temperature distributions are characterized and validated through spot measurements. The detailed understanding of them then allows for optimization of the HVAC configuration because identification of the problematic flow patterns and temperature mis-distributions leads to some corrective measures. Second, an appropriate form of the viscous dissipation term in the integral form of the conservation equation was considered, and the effects of momentum terms on the computed drop size in pressure-atomized sprays were examined. The Sauter mean diameter (SMD) calculated in this manner agrees well with experimental data of the drop velocities and sizes. Using the suggested equation with the revised treatment of liquid momentum setup, injection parameters can be directly input to the system of equations. Thus, this approach is capable of incorporating the effects of injection parameters for further considerations of the drop and velocity distributions under a wide range of spray geometry and injection conditions. Lastly, groundwater level estimation was investigated using compressed sensing (CS). To satisfy a general property of CS, a random measurement matrix was used, the groundwater network was constructed, and finally the l-1 optimization was run. Through several validation tests, correct estimation of groundwater level by CS was shown. Using this setup, decreasing trends in groundwater level in the southwestern US was shown. The suggested method is effective in that the total measurements of registered wells can be reduced down by approximately 42 %, sparse data can be visualized and a possible approach for groundwater management during extreme weather changes, e.g. in California, was demonstrated.
ContributorsLee, Joon Young (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
155309-Thumbnail Image.png
Description
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm

Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars.

Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona’s Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
ContributorsCherukuru, Nihanth Wagmi (Author) / Calhoun, Ronald (Thesis advisor) / Newsom, Rob (Committee member) / Huang, Huei Ping (Committee member) / Chen, Kangping (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2017
157560-Thumbnail Image.png
Description
This dissertation introduces FARCOM (Fortran Adaptive Refiner for Cartesian Orthogonal Meshes), a new general library for adaptive mesh refinement (AMR) based on an unstructured hexahedral mesh framework. As a result of the underlying unstructured formulation, the refinement and coarsening operators of the library operate on a single-cell basis and perform

This dissertation introduces FARCOM (Fortran Adaptive Refiner for Cartesian Orthogonal Meshes), a new general library for adaptive mesh refinement (AMR) based on an unstructured hexahedral mesh framework. As a result of the underlying unstructured formulation, the refinement and coarsening operators of the library operate on a single-cell basis and perform in-situ replacement of old mesh elements. This approach allows for h-refinement without the memory and computational expense of calculating masked coarse grid cells, as is done in traditional patch-based AMR approaches, and enables unstructured flow solvers to have access to the automated domain generation capabilities usually only found in tree AMR formulations.

The library is written to let the user determine where to refine and coarsen through custom refinement selector functions for static mesh generation and dynamic mesh refinement, and can handle smooth fields (such as level sets) or localized markers (e.g. density gradients). The library was parallelized with the use of the Zoltan graph-partitioning library, which provides interfaces to both a graph partitioner (PT-Scotch) and a partitioner based on Hilbert space-filling curves. The partitioned adjacency graph, mesh data, and solution variable data is then packed and distributed across all MPI ranks in the simulation, which then regenerate the mesh, generate domain decomposition ghost cells, and create communication caches.

Scalability runs were performed using a Leveque wave propagation scheme for solving the Euler equations. The results of simulations on up to 1536 cores indicate that the parallel performance is highly dependent on the graph partitioner being used, and differences between the partitioners were analyzed. FARCOM is found to have better performance if each MPI rank has more than 60,000 cells.
ContributorsBallesteros, Carlos Alberto (Author) / Herrmann, Marcus (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2019