Matching Items (13)
Filtering by

Clear all filters

151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
150534-Thumbnail Image.png
Description
Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription and default logic, are expressive but lack efficient implementations. The nonmonotonic formalisms that are based on the declarative logic programming approach, such as Answer Set Programming (ASP), have efficient implementations but are not expressive enough for representing and reasoning with open domains. This dissertation uses the first-order stable model semantics, which extends both first-order logic and ASP, to relate circumscription to ASP, and to integrate DLs and ASP, thereby partially overcoming the limitations of the formalisms. By exploiting the relationship between circumscription and ASP, well-known action formalisms, such as the situation calculus, the event calculus, and Temporal Action Logics, are reformulated in ASP. The advantages of these reformulations are shown with respect to the generality of the reasoning tasks that can be handled and with respect to the computational efficiency. The integration of DLs and ASP presented in this dissertation provides a framework for integrating rules and ontologies for the semantic web. This framework enables us to perform nonmonotonic reasoning with DL knowledge bases. Observing the need to integrate action theories and ontologies, the above results are used to reformulate the problem of integrating action theories and ontologies as a problem of integrating rules and ontologies, thus enabling us to use the computational tools developed in the context of the latter for the former.
ContributorsPalla, Ravi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2012
149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
168541-Thumbnail Image.png
Description
The purpose of the overall project is to create a simulated environment similar to Google map and traffic but simplified for education purposes. Students can choose different traffic patterns and program a car to navigate through the traffic dynamically based on the changing traffic. The environment used in the project

The purpose of the overall project is to create a simulated environment similar to Google map and traffic but simplified for education purposes. Students can choose different traffic patterns and program a car to navigate through the traffic dynamically based on the changing traffic. The environment used in the project is ASU VIPLE (Visual IoT/Robotics Programming Language Environment). It is a visual programming environment for Computer Science education. VIPLE supports a number of devices and platforms, including a traffic simulator developed using Unity game engine. This thesis focuses on creating realistic traffic data for the traffic simulator and implementing dynamic routing algorithm in VIPLE. The traffic data is generated from the recorded real traffic data published at Arizona Maricopa County website. Based on the generated traffic data, VIPLE programs are developed to implement the traffic simulation based on dynamic changing traffic data.
ContributorsZhang, Zhemin (Author) / Chen, Yinong (Thesis advisor) / Wang, Yalin (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2022
187378-Thumbnail Image.png
Description
This paper introduces Zenith, a statically typed, functional programming language that compiles to Lua modules. The goal of Zenith is to be used in tandem with Lua, as a secondary language, in which Lua developers can transition potentially unsound programs into Zenith instead. Here developers will be ensured a set

This paper introduces Zenith, a statically typed, functional programming language that compiles to Lua modules. The goal of Zenith is to be used in tandem with Lua, as a secondary language, in which Lua developers can transition potentially unsound programs into Zenith instead. Here developers will be ensured a set of guarantees during compile time, which are provided through Zenith’s language design and type system. This paper formulates the reasoning behind the design choices in Zenith, based on prior work. This paper also provides a basic understanding and intuitions on the Hindley-Milner type system used in Zenith, and the functional programming data types used to encode unsound functions. With these ideas combined, the paper concludes on how Zenith can provide soundness and runtime safety as a language, and how Zenith may be used with Lua to create safe systems.
ContributorsShrestha, Abhash (Author) / De Luca, Gennaro (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2023
Description

The field of quantum computing is an exciting area of research that allows quantum mechanics such as superposition, interference, and entanglement to be utilized in solving complex computing problems. One real world application of quantum computing involves applying it to machine learning problems. In this thesis, I explore the effects

The field of quantum computing is an exciting area of research that allows quantum mechanics such as superposition, interference, and entanglement to be utilized in solving complex computing problems. One real world application of quantum computing involves applying it to machine learning problems. In this thesis, I explore the effects of choosing different circuit ansatz and optimizers on the performance of a variational quantum classifier tasked with binary classification.

ContributorsHsu, Brightan (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
157864-Thumbnail Image.png
Description
Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major issue with teaching large programming classes is the potential lack of qualified teaching assistants to grade and offer insight to a student’s programs at a level beyond output analysis.

In this dissertation, I propose a novel framework for performing semantic autograding, which analyzes student programs at a semantic level to help students learn with additional and systematic help. A general autograder is not practical for general programming languages, due to the flexibility of semantics. A practical autograder is possible in VIPLE, because of its simplified syntax and restricted options of semantics. The design of this autograder is based on the concept of theorem provers. To achieve this goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare Logic to formalize program requirements. By building on the inference rules of Pi-Calculus and Hoare Logic, I am able to construct a theorem prover that can perform automated semantic analysis. Furthermore, building on this theorem prover enables me to develop a self-learning algorithm that can learn the conditions for a program’s correctness according to a given solution program.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis advisor) / Liu, Huan (Thesis advisor) / Hsiao, Sharon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2020
Description

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an app that people using Android or Apple can use, and this framework allows us to do that. The app is very user friendly and straightforward, which makes it usable to all types of people. It will be a free to use app that can be improved and adjusted if changes are needed/wanted.

ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165162-Thumbnail Image.png
ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05