Matching Items (42)
Filtering by

Clear all filters

152796-Thumbnail Image.png
Description
The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and appealing user interface elements. With the sudden rise in demand of web applications, developers are making full use of the

The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and appealing user interface elements. With the sudden rise in demand of web applications, developers are making full use of the power of HTML5, JavaScript and CSS3 to cater to their users on various platforms. There was never a need of classifying the ways in which these languages can be interconnected to each other as the size of the front end code base was relatively small and did not involve critical business logic. This thesis focuses on listing and defining all dependencies between HTML5, JavaScript and CSS3 that will help developers better understand the interconnections within these languages. We also explore the present techniques available to a developer to make his code free of dependency related defects. We build a prototype tool, HJCDepend, based on our model, which aims at helping developers discover and remove defects early in the development cycle.
ContributorsVasugupta (Author) / Gary, Kevin (Thesis advisor) / Lindquist, Timothy (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2014
153213-Thumbnail Image.png
Description
The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the volume of RDF data grew to exponential proportions, the limitations of these systems became apparent and researchers began to focus on using big data analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that evaluate these tools for RDF data processing have been published. In the past two and half years, however, heavy users of big data systems, like Facebook, noted limitations with the query performance of these big data systems and began to develop new distributed query engines for big data that do not rely on map-reduce. Facebook's Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To evaluate the performance Presto for big RDF data processing, a map-reduce program and a compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and Hive) can understand. The evaluation was done on four and eight node Linux clusters installed on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples. The results of the experiment show that Presto has a much higher performance than Hive can be used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-RDF, that can be used to process big RDF data.
ContributorsMammo, Mulugeta (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Lindquist, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
149848-Thumbnail Image.png
Description
With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved.

With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved. The first problem is the need for a scalable representation of the input video. The recently developed scalable extension of the state-of-the art H.264/MPEG-4 AVC video coding standard, also known as H.264/SVC (Scalable Video Coding) provides a solution to this problem. The second problem is that wireless transmission medium typically introduce errors in the bit stream due to noise, congestion and fading on the channel. Protection against these channel impairments can be realized by the use of forward error correcting (FEC) codes. In this research study, the performance of scalable video coding in the presence of bit errors is studied. The encoded video is channel coded using Reed Solomon codes to provide acceptable performance in the presence of channel impairments. In the scalable bit stream, some parts of the bit stream are more important than other parts. Parity bytes are assigned to the video packets based on their importance in unequal error protection scheme. In equal error protection scheme, parity bytes are assigned based on the length of the message. A quantitative comparison of the two schemes, along with the case where no channel coding is employed is performed. H.264 SVC single layer video streams for long video sequences of different genres is considered in this study which serves as a means of effective video characterization. JSVM reference software, in its current version, does not support decoding of erroneous bit streams. A framework to obtain H.264 SVC compatible bit stream is modeled in this study. It is concluded that assigning of parity bytes based on the distribution of data for different types of frames provides optimum performance. Application of error protection to the bit stream enhances the quality of the decoded video with minimal overhead added to the bit stream.
ContributorsSundararaman, Hari (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150509-Thumbnail Image.png
Description
Gathering and managing software requirements, known as Requirement Engineering (RE), is a significant and basic step during the Software Development Life Cycle (SDLC). Any error or defect during the RE step will propagate to further steps of SDLC and resolving it will be more costly than any defect in other

Gathering and managing software requirements, known as Requirement Engineering (RE), is a significant and basic step during the Software Development Life Cycle (SDLC). Any error or defect during the RE step will propagate to further steps of SDLC and resolving it will be more costly than any defect in other steps. In order to produce better quality software, the requirements have to be free of any defects. Verification and Validation (V&V;) of requirements are performed to improve their quality, by performing the V&V; process on the Software Requirement Specification (SRS) document. V&V; of the software requirements focused to a specific domain helps in improving quality. A large database of software requirements from software projects of different domains is created. Software requirements from commercial applications are focus of this project; other domains embedded, mobile, E-commerce, etc. can be the focus of future efforts. The V&V; is done to inspect the requirements and improve the quality. Inspections are done to detect defects in the requirements and three approaches for inspection of software requirements are discussed; ad-hoc techniques, checklists, and scenario-based techniques. A more systematic domain-specific technique is presented for performing V&V; of requirements.
ContributorsChughtai, Rehman (Author) / Ghazarian, Arbi (Thesis advisor) / Bansal, Ajay (Committee member) / Millard, Bruce (Committee member) / Arizona State University (Publisher)
Created2012
156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
157365-Thumbnail Image.png
Description
UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature.

The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development.

UVLabel provides both a functional product, and a modifiable and scalable code base for radio astronomer developers. This enables astronomers studying various astronomical interferometric data labelling capabilities. The tool can then be used to improve their filtering methods, pursue machine learning solutions, and discover new trends. Finally, UVLabel will be open source to put customization, scalability, and adaptability in the hands of these researchers.
ContributorsLa Place, Cecilia (Author) / Bansal, Ajay (Thesis advisor) / Jacobs, Daniel (Thesis advisor) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2019
157371-Thumbnail Image.png
Description
Capturing the information in an image into a natural language sentence is

considered a difficult problem to be solved by computers. Image captioning involves not just detecting objects from images but understanding the interactions between the objects to be translated into relevant captions. So, expertise in the fields of computer vision

Capturing the information in an image into a natural language sentence is

considered a difficult problem to be solved by computers. Image captioning involves not just detecting objects from images but understanding the interactions between the objects to be translated into relevant captions. So, expertise in the fields of computer vision paired with natural language processing are supposed to be crucial for this purpose. The sequence to sequence modelling strategy of deep neural networks is the traditional approach to generate a sequential list of words which are combined to represent the image. But these models suffer from the problem of high variance by not being able to generalize well on the training data.

The main focus of this thesis is to reduce the variance factor which will help in generating better captions. To achieve this, Ensemble Learning techniques have been explored, which have the reputation of solving the high variance problem that occurs in machine learning algorithms. Three different ensemble techniques namely, k-fold ensemble, bootstrap aggregation ensemble and boosting ensemble have been evaluated in this thesis. For each of these techniques, three output combination approaches have been analyzed. Extensive experiments have been conducted on the Flickr8k dataset which has a collection of 8000 images and 5 different captions for every image. The bleu score performance metric, which is considered to be the standard for evaluating natural language processing (NLP) problems, is used to evaluate the predictions. Based on this metric, the analysis shows that ensemble learning performs significantly better and generates more meaningful captions compared to any of the individual models used.
ContributorsKatpally, Harshitha (Author) / Bansal, Ajay (Thesis advisor) / Acuna, Ruben (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2019
156689-Thumbnail Image.png
Description
Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often only extract certain kinds of information they deem necessary and

Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often only extract certain kinds of information they deem necessary and extraction worthy. Using data visualization theory and fast, interactive querying methods, leaving out information might not really be necessary. This thesis explores textual data visualization techniques, intuitive querying, and a novel approach to all-purpose textual information extraction to encode large text corpus to improve human understanding of the information present in textual data.

This thesis presents a modified traversal algorithm on dependency parse output of text to extract all subject predicate object pairs from text while ensuring that no information is missed out. To support full scale, all-purpose information extraction from large text corpuses, a data preprocessing pipeline is recommended to be used before the extraction is run. The output format is designed specifically to fit on a node-edge-node model and form the building blocks of a network which makes understanding of the text and querying of information from corpus quick and intuitive. It attempts to reduce reading time and enhancing understanding of the text using interactive graph and timeline.
ContributorsHashmi, Syed Usama (Author) / Bansal, Ajay (Thesis advisor) / Bansal, Srividya (Committee member) / Gonzalez Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2018
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018