Matching Items (17)
Filtering by

Clear all filters

149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
132493-Thumbnail Image.png
Description
The nonprofit organization, I Am Zambia, works to give supplemental education to young women in Lusaka. I Am Zambia is creating sustainable change by educating these females, who can then lift their families and communities out of poverty. The ultimate goal of this thesis was to explore and implement high

The nonprofit organization, I Am Zambia, works to give supplemental education to young women in Lusaka. I Am Zambia is creating sustainable change by educating these females, who can then lift their families and communities out of poverty. The ultimate goal of this thesis was to explore and implement high level systematic problem solving through basic and specialized computational thinking curriculum at I Am Zambia in order to give these women an even larger stepping stool into a successful future.

To do this, a 4-week long pilot curriculum was created, implemented, and tested through an optional class at I Am Zambia, available to women who had already graduated from the year-long I Am Zambia Academy program. A total of 18 women ages 18-24 chose to enroll in the course. There were a total of 10 lessons, taught over 20 class period. These lessons covered four main computational thinking frameworks: introduction to computational thinking, algorithmic thinking, pseudocode, and debugging. Knowledge retention was tested through the use of a CS educational tool, QuizIt, created by the CSI Lab of School of Computing, Informatics and Decision Systems Engineering at Arizona State University. Furthermore, pre and post tests were given to assess the successfulness of the curriculum in teaching students the aforementioned concepts. 14 of the 18 students successfully completed the pre and post test.

Limitations of this study and suggestions for how to improve this curriculum in order to extend it into a year long course are also presented at the conclusion of this paper.
ContributorsGriffin, Hadley Meryl (Author) / Hsiao, Sharon (Thesis director) / Mutsumi, Nakamura (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134905-Thumbnail Image.png
Description
Research has shown that the cheat sheet preparation process helps students with performance in exams. However, results have been inconclusive in determining the most effective guiding principles in creating and using cheat sheets. The traditional method of collecting and annotating cheat sheets is time consuming and exhaustive, and fails to

Research has shown that the cheat sheet preparation process helps students with performance in exams. However, results have been inconclusive in determining the most effective guiding principles in creating and using cheat sheets. The traditional method of collecting and annotating cheat sheets is time consuming and exhaustive, and fails to capture students' preparation process. This thesis examines the development and usage of a new web-based cheat sheet creation tool, Study Genie, and its effects on student performance in an introductory computer science and programming course. Results suggest that actions associated with editing and organizing cheat sheets are positively correlated with exam performance, and that there is a significant difference between the activity of high-performing and low-performing students. Through these results, Study Genie presents itself as an opportunity for mass data collection and to provide insight into the assembly process rather than just the finished product in cheat sheet creation.
ContributorsWu, Jiaqi (Co-author) / Wen, Terry (Co-author) / Hsiao, Sharon (Thesis director) / Walker, Erin (Committee member) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
189274-Thumbnail Image.png
Description
Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared

Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared to manifold methods. To aid in the improvement of the field, this paper aims to propose an intrinsic volumetric conic system that can be applied to bounded volumetric meshes to enable a more effective study of subjects. The computation of the metric involves the use of heat kernel theory and conformal parameterization on genus-0 surfaces extended to a volumetric domain. Additionally, this paper also explores the use of the ’TetCNN’ architecture on the classification of hippocampal tetrahedral meshes to detect features that correspond to Alzheimer’s indicators. The model tested was able to achieve remarkable results with a measured classification accuracy of above 90% in the task of differentiating between subjects diagnosed with Alzheimer’s and normal control subjects.
ContributorsGeorge, John Varghese (Author) / Wang, Yalin (Thesis advisor) / Hansford, Dianne (Committee member) / Gupta, Vikash (Committee member) / Arizona State University (Publisher)
Created2023
168452-Thumbnail Image.png
Description
Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learners' behavior and

Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learners' behavior and assessing learners' performance for personalization. Hands-on labs are a critical learning approach for cybersecurity education. It provides real-world complex problem scenarios and helps learners develop a deeper understanding of knowledge and concepts while solving real-world problems. But there are unique challenges when using hands-on labs for cybersecurity education. Existing hands-on lab exercises materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. To solve these challenges, a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment is established. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. A knowledge graph in the cybersecurity domain is also constructed using Natural language processing (NLP) technologies including word embedding and hyperlink-based concept mining. This knowledge graph is then utilized during the regular learning process to build a personalized lab recommendation system by suggesting relevant labs based on students' past learning history to maximize their learning outcomes. To evaluate ThoTh Lab, several in-class experiments were carried out in cybersecurity classes for both graduate and undergraduate students at Arizona State University and data was collected over several semesters. The case studies show that, by leveraging the personalized lab platform, students tend to be more absorbed in a lab project, show more interest in the cybersecurity area, spend more effort on the project and gain enhanced learning outcomes.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Li, Baoxin (Committee member) / Zhao, Ming (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2021
156833-Thumbnail Image.png
Description
Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to

Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment.

To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.
ContributorsPrakash, Siddhant (Author) / LiKamWa, Robert (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2018
156951-Thumbnail Image.png
Description
Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single

Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single modal data and difficulty in analyzing high dimensional data. Towards facilitating the processing and understanding of online data, this dissertation primarily focuses on three challenges that I feel are of great practical importance: handling scale differences in computer vision tasks, such as facial component detection and face retrieval, developing efficient classifiers using partially labeled data and noisy data, and employing multi-modal models and feature selection to improve multi-view data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and accurately detect facial landmarks. For the second challenge, I propose two algorithms that can be used to learn from partially labeled data and noisy data respectively. For the third challenge, I propose a new framework that incorporates feature selection modules into LDA models.
ContributorsZhou, Xu (Author) / Li, Baoxin (Thesis advisor) / Hsiao, Sharon (Committee member) / Davulcu, Hasan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
157095-Thumbnail Image.png
Description
An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only

An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only useful, but also novel. In practice, there are initiatives such as Free and Open Source Software communities developing innovative software. In research, the field of crowdsourced creativity, which attempts to design scalable support mechanisms, is blooming. However, both contexts still present many opportunities for advancement.

In this dissertation, I seek to advance both the knowledge of limitations in current technologies used in practice as well as the mechanisms that can be used for large-scale support. The overall research question I explore is: “How can we support large-scale creative collaboration in distributed online communities?” I first advance existing support techniques by evaluating the impact of active support in brainstorming performance. Furthermore, I leverage existing theoretical models of individual idea generation as well as recommender system techniques to design CrowdMuse, a novel adaptive large-scale idea generation system. CrowdMuse models users in order to adapt itself to each individual. I evaluate the system’s efficacy through two large-scale studies. I also advance knowledge of current large-scale practices by examining common communication channels under the lens of Creativity Support Tools, yielding a list of creativity bottlenecks brought about by the affordances of these channels. Finally, I connect both ends of this dissertation by deploying CrowdMuse in an Open Source online community for two weeks. I evaluate their usage of the system as well as its perceived benefits and issues compared to traditional communication tools.

This dissertation makes the following contributions to the field of large-scale creativity: 1) the design and evaluation of a first-of-its-kind adaptive brainstorming system; 2) the evaluation of the effects of active inspirations compared to simple idea exposure; 3) the development and application of a set of creativity support design heuristics to uncover creativity bottlenecks; and 4) an exploration of large-scale brainstorming systems’ usefulness to online communities.
Contributorsda Silva Girotto, Victor Augusto (Author) / Walker, Erin A (Thesis advisor) / Burleson, Winslow (Thesis advisor) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Bigham, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2019
154641-Thumbnail Image.png
Description
Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed

Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed by classification of the associated text as consisting an ADR or not. Although this method works efficiently for ADR classifications, if ADR evidence is present in users posts over time, drug mentions fail to capture such ADRs. It also fails to record additional user information which may provide an opportunity to perform an in-depth analysis for lifestyle habits and possible reasons for any medical problems.

Pre-market clinical trials for drugs generally do not include pregnant women, and so their effects on pregnancy outcomes are not discovered early. This thesis presents a thorough, alternative strategy for assessing the safety profiles of drugs during pregnancy by utilizing user timelines from social media. I explore the use of a variety of state-of-the-art social media mining techniques, including rule-based and machine learning techniques, to identify pregnant women, monitor their drug usage patterns, categorize their birth outcomes, and attempt to discover associations between drugs and bad birth outcomes.

The technique used models user timelines as longitudinal patient networks, which provide us with a variety of key information about pregnancy, drug usage, and post-

birth reactions. I evaluate the distinct parts of the pipeline separately, validating the usefulness of each step. The approach to use user timelines in this fashion has produced very encouraging results, and can be employed for a range of other important tasks where users/patients are required to be followed over time to derive population-based measures.
ContributorsChandrashekar, Pramod Bharadwaj (Author) / Davulcu, Hasan (Thesis advisor) / Gonzalez, Graciela (Thesis advisor) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2016