Matching Items (47)

Filtering by

Clear all filters

134294-Thumbnail Image.png

Visual Analytics and the Impact of Inter-Country Trade on Violence

Description

Global violent conflict has become an increasing problem in recent decades, especially in the African continent. Civil wars, terrorism, riots, and political violence has wrought havoc not only on civilian lives, but also on economic foundations. Trade networks are a

Global violent conflict has become an increasing problem in recent decades, especially in the African continent. Civil wars, terrorism, riots, and political violence has wrought havoc not only on civilian lives, but also on economic foundations. Trade networks are a way to measure these economic foundations. To summarize trade networks clustering coefficient as well as trade quantity/value summation measures are used. To understand effects of global trade on violent conflict, Pearson product-moment correlations are utilized. This work details a comparison of African national economies and violent conflict events using clustering coefficient, trade summation measures and Pearson correlation coefficient.

Contributors

Agent

Created

Date Created
2017-05

137156-Thumbnail Image.png

First Impressions: A Multimodal Analysis of Movie Trailers and Film Success

Description

Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie

Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie studios invest heavily in pre-release advertisement. The most visible advertisement is the movie trailer, which, in no more than two minutes and thirty seconds, serves as many people's first introduction to a film. The question, however, is how can we be confident that a trailer will succeed in its promotional task, and bring about the audience a studio expects? In this thesis, we use machine learning classification techniques to determine the effectiveness of a movie trailer in the promotion of its namesake. We accomplish this by creating a predictive model that automatically analyzes the audio and visual characteristics of a movie trailer to determine whether or not a film's opening will be successful by earning at least 35% of a film's production budget during its first U.S. box office weekend. Our predictive model performed reasonably well, achieving an accuracy of 68.09% in a binary classification. Accuracy increased to 78.62% when including genre in our predictive model.

Contributors

Agent

Created

Date Created
2014-05

137197-Thumbnail Image.png

Visual Analytic Tools for Geo-Genealogy and Geo-Demographics

Description

This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United

This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United States Census Bureau, and allow users to interactively compare distributions of names with regards to spatial location similarity and income. In order to enable interactive similarity exploration, we explore methods of pre-processing the data as well as on-the-fly lookups. As data becomes larger and more complex, the development of appropriate data storage and analytics solutions has become even more critical when enabling online visualization. We discuss problems faced in implementation, design decisions and directions for future work.

Contributors

Agent

Created

Date Created
2014-05

152506-Thumbnail Image.png

Cluster metrics and temporal coherency in pixel based matrices

Description

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as:

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.

Contributors

Agent

Created

Date Created
2014

152300-Thumbnail Image.png

Combining thickness information with surface tensor-based morphometry for the 3D statistical analysis of the corpus callosum

Description

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice,

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh to compute the Laplacian operator, so our computation can achieve sub-voxel accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We combine areal changes found using surface tensor-based morphometry and thickness information into a vector at each vertex to be used as a metric for the statistical analysis. Group differences are assessed on this combined measure through Hotelling's T2 test. The method is applied to statistically compare three groups consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted (SC) subjects. Our results reveal significant differences in several regions of the CC between both blind groups and the sighted groups; and to a lesser extent between the LB and CB groups. These results demonstrate the crucial role of visual deprivation during the developmental period in reshaping the structural architecture of the CC.

Contributors

Agent

Created

Date Created
2013

152370-Thumbnail Image.png

Characterizing retinotopic mapping using conformal geometry and Beltrami coefficient: a preliminary study

Description

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.

Contributors

Agent

Created

Date Created
2013

An Empirical Study of View Construction for Multi-View Learning

Description

Multi-view learning, a subfield of machine learning that aims to improve model performance by training on multiple views of the data, has been studied extensively in the past decades. It is typically applied in contexts where the input features naturally

Multi-view learning, a subfield of machine learning that aims to improve model performance by training on multiple views of the data, has been studied extensively in the past decades. It is typically applied in contexts where the input features naturally form multiple groups or views. An example of a naturally multi-view context is a data set of websites, where each website is described not only by the text on the page, but also by the text of hyperlinks pointing to the page. More recently, various studies have demonstrated the initial success of applying multi-view learning on single-view data with multiple artificially constructed views. However, there lacks a systematic study regarding the effectiveness of such artificially constructed views. To bridge this gap, this thesis begins by providing a high-level overview of multi-view learning with the co-training algorithm. Co-training is a classic semi-supervised learning algorithm that takes advantage of both labelled and unlabelled examples in the data set for training. Then, the thesis presents a web-based tool developed in Python allowing users to experiment with and compare the performance of multiple view construction approaches on various data sets. The supported view construction approaches in the web-based tool include subsampling, Optimal Feature Set Partitioning, and the genetic algorithm. Finally, the thesis presents an empirical comparison of the performance of these approaches, not only against one another, but also against traditional single-view models. The findings show that a simple subsampling approach combined with co-training often outperforms both the other view construction approaches, as well as traditional single-view methods.

Contributors

Agent

Created

Date Created
2019-12

154403-Thumbnail Image.png

Visual analytics for spatiotemporal cluster analysis

Description

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would not be apparent in tabular form. However, several critical challenges arise when visualizing and exploring these large spatiotemporal datasets. While, the underlying geographical component of the data lends itself well to univariate visualization in the form of traditional cartographic representations (e.g., choropleth, isopleth, dasymetric maps), as the data becomes multivariate, cartographic representations become more complex. To simplify the visual representations, analytical methods such as clustering and feature extraction are often applied as part of the classification phase. The automatic classification can then be rendered onto a map; however, one common issue in data classification is that items near a classification boundary are often mislabeled.

This thesis explores methods to augment the automated spatial classification by utilizing interactive machine learning as part of the cluster creation step. First, this thesis explores the design space for spatiotemporal analysis through the development of a comprehensive data wrangling and exploratory data analysis platform. Second, this system is augmented with a novel method for evaluating the visual impact of edge cases for multivariate geographic projections. Finally, system features and functionality are demonstrated through a series of case studies, with key features including similarity analysis, multivariate clustering, and novel visual support for cluster comparison.

Contributors

Agent

Created

Date Created
2016

154357-Thumbnail Image.png

Vectorization in analyzing 2D/3D data

Description

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS),

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In graphic design and photography, raster graphics can be vectorized for easier usage and resizing. Vector arts are popular as online contents. Vectorization takes raster images, point clouds, or a series of scattered data samples in space, outputs graphic elements of various types including points, lines, curves, polygons, parametric curves and surface patches. The vectorized representations consist of a different set of components and elements from that of the inputs. The change of representation is the key difference between vectorization and practices such as smoothing and filtering. Compared to the inputs, the vector outputs provide higher order of control and attributes such as smoothness. Their curvatures or gradients at the points are scale invariant and they are more robust data sources for downstream applications and analysis. This dissertation explores and broadens the scope of vectorization in various contexts. I propose a novel vectorization algorithm on raster images along with several new applications for vectorization mechanism in processing and analysing both 2D and 3D data sets. The main components of the research are: using vectorization in generating 3D models from 2D floor plans; a novel raster image vectorization methods and its applications in computer vision, image processing, and animation; and vectorization in visualizing and information extraction in 3D laser scan data. I also apply vectorization analysis towards human body scans and rock surface scans to show insights otherwise difficult to obtain.

Contributors

Agent

Created

Date Created
2016

151760-Thumbnail Image.png

3D rooftop detection and modeling using orthographic aerial images

Description

Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban planning, identifying cover in military training or flight training. Detection

Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban planning, identifying cover in military training or flight training. Detection of such features using commonly available geospatial data like orthographic aerial imagery is very challenging because rooftop and tree textures are often camouflaged by similar looking features like roads, ground and grass. So, additonal data such as LIDAR, multispectral imagery and multiple viewpoints are exploited for more accurate detection. However, such data is often not available, or may be improperly registered or inacurate. In this thesis, we discuss a novel framework that only uses orthographic images for detection and modeling of rooftops. A segmentation scheme that initializes by assigning either foreground (rooftop) or background labels to certain pixels in the image based on shadows is proposed. Then it employs grabcut to assign one of those two labels to the rest of the pixels based on initial labeling. Parametric model fitting is performed on the segmented results in order to create a 3D scene and to facilitate roof-shape and height estimation. The framework can also benefit from additional geospatial data such as streetmaps and LIDAR, if available.

Contributors

Agent

Created

Date Created
2013