Matching Items (17)
Filtering by

Clear all filters

152849-Thumbnail Image.png
Description
New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.
ContributorsAlipourfard, Omid (Author) / Syrotiuk, Violet R. (Thesis advisor) / Richa, Andréa W. (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2014
153127-Thumbnail Image.png
Description
Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this

Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this work has integrated context-aware search principles with applications of preference based re-ranking and query modifications. This research investigates several aspects of context-aware search principles, specifically context-sensitive and preference based re-ranking of results which take user inputs as to their preferred content, and combines this with search query modifications which automatically search for a variety of modified terms based on the given search query, integrating these results into the overall re-ranking for the context. The result of this work is a novel web search algorithm which could be applied to any online learning environment attempting to collect relevant resources for learning about a given topic. The algorithm has been evaluated through user studies comparing traditional search results to the context-aware results returned through the algorithm for a given topic. These studies explore how this integration of methods could provide improved relevance in the search results returned when compared against other modern search engines.
ContributorsVan Egmond, Eric (Author) / Burleson, Winslow (Thesis advisor) / Syrotiuk, Violet (Thesis advisor) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153265-Thumbnail Image.png
Description
Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system,

Corporations invest considerable resources to create, preserve and analyze

their data; yet while organizations are interested in protecting against

unauthorized data transfer, there lacks a comprehensive metric to discriminate

what data are at risk of leaking.

This thesis motivates the need for a quantitative leakage risk metric, and

provides a risk assessment system, called Whispers, for computing it. Using

unsupervised machine learning techniques, Whispers uncovers themes in an

organization's document corpus, including previously unknown or unclassified

data. Then, by correlating the document with its authors, Whispers can

identify which data are easier to contain, and conversely which are at risk.

Using the Enron email database, Whispers constructs a social network segmented

by topic themes. This graph uncovers communication channels within the

organization. Using this social network, Whispers determines the risk of each

topic by measuring the rate at which simulated leaks are not detected. For the

Enron set, Whispers identified 18 separate topic themes between January 1999

and December 2000. The highest risk data emanated from the legal department

with a leakage risk as high as 60%.
ContributorsWright, Jeremy (Author) / Syrotiuk, Violet (Thesis advisor) / Davulcu, Hasan (Committee member) / Yau, Stephen (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
151063-Thumbnail Image.png
Description
Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC)

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal with internal interference without the exact knowledge on the number of participants in the network, but they are also robust to unintentional or intentional external interference, e.g., due to co-existing networks or jammers. We model the external interference by a powerful adaptive and/or reactive adversary which can jam a (1 − ε)-portion of the time steps, where 0 < ε ≤ 1 is an arbitrary constant. We allow the adversary to be adaptive and to have complete knowledge of the entire protocol history. Moreover, in case the adversary is also reactive, it uses carrier sensing to make informed decisions to disrupt communications. Among the proposed protocols, JADE, ANTIJAM and COMAC are able to achieve Θ(1)-competitive throughput with the presence of the strong adversary; while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Interference plus Noise Ratio), in robust medium access protocols design; the derived principles are also useful to build applications on top of the MAC layer, and we present SELECT, which is an exemplary study for leader election, which is one of the most fundamental tasks in distributed computing.
ContributorsZhang, Jin (Author) / Richa, Andréa W. (Thesis advisor) / Scheideler, Christian (Committee member) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
154160-Thumbnail Image.png
Description
Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial

Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial objects

that guarantee that every interaction is tested at least once.

In the absence of direct constructions, forming small covering arrays is generally

an expensive computational task. Algorithms to generate covering arrays have been

extensively studied yet no single algorithm provides the smallest solution. More

recently research has been directed towards a new technique called post-optimization.

These algorithms take an existing covering array and attempt to reduce its size.

This thesis presents a new idea for post-optimization by representing covering

arrays as graphs. Some properties of these graphs are established and the results are

contrasted with existing post-optimization algorithms. The idea is then generalized to

close variants of covering arrays with surprising results which in some cases reduce

the size by 30%. Applications of the method to generation and test prioritization are

studied and some interesting results are reported.
ContributorsKaria, Rushang Vinod (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet (Committee member) / Richa, Andréa W. (Committee member) / Arizona State University (Publisher)
Created2015
156392-Thumbnail Image.png
Description
Medium access control (MAC) is a fundamental problem in wireless networks.

In ad-hoc wireless networks especially, many of the performance and scaling issues

these networks face can be attributed to their use of the core IEEE 802.11 MAC

protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning

(SALT) is a new contention window tuning

Medium access control (MAC) is a fundamental problem in wireless networks.

In ad-hoc wireless networks especially, many of the performance and scaling issues

these networks face can be attributed to their use of the core IEEE 802.11 MAC

protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning

(SALT) is a new contention window tuning algorithm proposed to address some of the

deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level

and optimized implementation of REACT, a distributed resource allocation protocol,

to ensure that each node secures the amount of airtime allocated to it by REACT.

The algorithm accomplishes that by tuning the contention window size parameter

that is part of the 802.11 backoff process. SALT converges more tightly on airtime

allocations than a contention window tuning algorithm from previous work and this

increases fairness in transmission opportunities and reduces jitter more than either

802.11 DCF or the other tuning algorithm. REACT and SALT were also extended

to the multi-hop flow scenario with the introduction of a new airtime reservation

algorithm. With a reservation in place multi-hop TCP throughput actually increased

when running SALT and REACT as compared to 802.11 DCF, and the combination of

protocols still managed to maintain its fairness and jitter advantages. All experiments

were performed on a wireless testbed, not in simulation.
ContributorsMellott, Matthew (Author) / Syrotiuk, Violet (Thesis advisor) / Colbourn, Charles (Committee member) / Tinnirello, Ilenia (Committee member) / Arizona State University (Publisher)
Created2018
156648-Thumbnail Image.png
Description
Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the

Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the Amazon Delta Riverine region as data mule nodes is investigated and a robust data routing algorithm based on a fountain code approach is designed to ensure fast and timely data delivery considering unpredictable boat delays, break-downs, and high transmission failures. Then, the scenario of providing healthcare in Amazon Delta Region is extended to a general All-or-Nothing (Splittable) Multicommodity Flow (ANF) problem and a polynomial time constant approximation algorithm is designed for the maximum throughput routing problem based on a randomized rounding scheme with applications to DTNs. In an MSN, message content is closely related to users’ preferences, and can be used to significantly impact the performance of data dissemination. An interest- and content-based algorithm is developed where the contents of the messages, along with the network structural information are taken into consideration when making message relay decisions in order to maximize data throughput in an MSN. Extensive experiments show the effectiveness of the above proposed data dissemination algorithm by comparing it with state-of-the-art techniques.
ContributorsLiu, Mengxue (Author) / Richa, Andréa W. (Thesis advisor) / Johnson, Thienne (Committee member) / Syrotiuk, Violet R. (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2018
153593-Thumbnail Image.png
Description
In software testing, components are tested individually to make sure each performs as expected. The next step is to confirm that two or more components are able to work together. This stage of testing is often difficult because there can be numerous configurations between just two components.

Covering arrays are one

In software testing, components are tested individually to make sure each performs as expected. The next step is to confirm that two or more components are able to work together. This stage of testing is often difficult because there can be numerous configurations between just two components.

Covering arrays are one way to ensure a set of tests will cover every possible configuration at least once. However, on systems with many settings, it is computationally intensive to run every possible test. Test prioritization methods can identify tests of greater importance. This concept of test prioritization can help determine which tests can be removed with minimal impact to the overall testing of the system.

This thesis presents three algorithms that generate covering arrays that test the interaction of every two components at least twice. These algorithms extend the functionality of an established greedy test prioritization method to ensure important components are selected in earlier tests. The algorithms are tested on various inputs and the results reveal that on average, the resulting covering arrays are two-fifths to one-half times smaller than a covering array generated through brute force.
ContributorsAng, Nicole (Author) / Syrotiuk, Violet (Thesis advisor) / Colbourn, Charles (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2015
154497-Thumbnail Image.png
Description
Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load manipulation for applications in construction, manufacturing, and disaster response.

In this work, I address the challenges of controlling a swarm of resource-constrained robots to achieve boundary coverage, which I refer to as the problem of stochastic boundary coverage. I first examined an instance of this behavior in the biological phenomenon of group food retrieval by desert ants, and developed a hybrid dynamical system model of this process from experimental data. Subsequently, with the aid of collaborators, I used a continuum abstraction of swarm population dynamics, adapted from a modeling framework used in chemical kinetics, to derive stochastic robot control policies that drive a swarm to target steady-state allocations around multiple boundaries in a way that is robust to environmental variations.

Next, I determined the statistical properties of the random graph that is formed by a group of robots, each with the same capabilities, that have attached to a boundary at random locations. I also computed the probability density functions (pdfs) of the robot positions and inter-robot distances for this case.

I then extended this analysis to cases in which the robots have heterogeneous communication/sensing radii and attach to a boundary according to non-uniform, non-identical pdfs. I proved that these more general coverage strategies generate random graphs whose probability of connectivity is Sharp-P Hard to compute. Finally, I investigated possible approaches to validating our boundary coverage strategies in multi-robot simulations with realistic Wi-fi communication.
ContributorsPeruvemba Kumar, Ganesh (Author) / Berman, Spring M (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Bazzi, Rida (Committee member) / Syrotiuk, Violet (Committee member) / Taylor, Thomas (Committee member) / Arizona State University (Publisher)
Created2016