Matching Items (141)
Filtering by

Clear all filters

149957-Thumbnail Image.png
Description
Time series analysis of dynamic networks is an important area of study that helps in predicting changes in networks. Changes in networks are used to analyze deviations in the network characteristics. This analysis helps in characterizing any network that has dynamic behavior. This area of study has applications in many

Time series analysis of dynamic networks is an important area of study that helps in predicting changes in networks. Changes in networks are used to analyze deviations in the network characteristics. This analysis helps in characterizing any network that has dynamic behavior. This area of study has applications in many domains such as communication networks, climate networks, social networks, transportation networks, and biological networks. The aim of this research is to analyze the structural characteristics of such dynamic networks. This thesis examines tools that help to analyze the structure of the networks and explores a technique for computation and analysis of a large climate dataset. The computations for analyzing the structural characteristics are done in a computing cluster and there is a linear speed up in computation time compared to a single-core computer. As an application, a large sea ice concentration anomaly dataset is analyzed. The large dataset is used to construct a correlation based graph. The results suggest that the climate data has the characteristics of a small-world graph.
ContributorsParamasivam, Kumaraguru (Author) / Colbourn, Charles J (Thesis advisor) / Sen, Arunabhas (Committee member) / Syrotiuk, Violet R. (Committee member) / Arizona State University (Publisher)
Created2011
150212-Thumbnail Image.png
Description
This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management

This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management systems (DBMS). Also, unlike other client-driven work, this approach provides support for a richer set of schema updates including vertical split (normalization), horizontal split, vertical and horizontal merge (union), difference and intersection. The update process automatically generates a runtime update client from a mapping between the old the new schemas. The solution has been validated by testing it on a relatively small database of around 300,000 records per table and less than 1 Gb, but with limited memory buffer size of 24 Mb. This thesis presents the study of the overhead of the update process as a function of the transaction rates and the batch size used to copy data from the old to the new schema. It shows that the overhead introduced is minimal for medium size applications and that the update can be achieved with no more than one minute of downtime.
ContributorsTyagi, Preetika (Author) / Bazzi, Rida (Thesis advisor) / Candan, Kasim S (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
149703-Thumbnail Image.png
Description
This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based model is provided; it creates all edges deterministically and shows an asymptotically matching upper bound on the route length. The main goal is to improve greedy routing through a decentralized machine learning process. Two considered methods are based on weighted majority and an algorithm of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests are run on both artificial and real networks, with decentralized spectral graph embedding supplying geometric information for real networks where it is not intrinsically available. An important measure analyzed in this work is overpayment, the difference between the cost of the method and that of the shortest path. Adaptive routing overtakes greedy after about a hundred or fewer searches per node, consistently across different network sizes and types. Learning stabilizes, typically at overpayment of a third to a half of that by greedy. The problem is made more difficult by eliminating the knowledge of neighbors' locations or by introducing uncooperative nodes. Even under these conditions, the learned routes are usually better than the greedy routes. The second part of the dissertation is related to the community structure of unannotated networks. A modularity-based algorithm of Newman is extended to work with overlapping communities (including considerably overlapping communities), where each node locally makes decisions to which potential communities it belongs. To measure quality of a cover of overlapping communities, a notion of a node contribution to modularity is introduced, and subsequently the notion of modularity is extended from partitions to covers. The final part considers a problem of network anonymization, mostly by the means of edge deletion. The point of interest is utility preservation. It is shown that a concentration on the preservation of routing abilities might damage the preservation of community structure, and vice versa.
ContributorsBakun, Oleg (Author) / Konjevod, Goran (Thesis advisor) / Richa, Andrea (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / Czygrinow, Andrzej (Committee member) / Arizona State University (Publisher)
Created2011
152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
ContributorsBhyravajosyula, Sai Vishnu Kiran (Author) / Syrotiuk, Violet R. (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2013
152172-Thumbnail Image.png
Description
The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay

The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay and throughput, and sometimes bounding maximum delay. However, they adapt slowly, if at all, to changes in the network. Contention-based schemes are agile, adapting quickly to changes in perceived contention, but suffer from short-term unfairness, large variations in packet delay, and poor performance at high load. The perfect MAC protocol, it seems, embodies the strengths of both contention- and schedule-based approaches while avoiding their weaknesses. This thesis culminates in the design of a Variable-Weight and Adaptive Topology Transparent (VWATT) MAC protocol. The design of VWATT first required answers for two questions: (1) If a node is equipped with schedules of different weights, which weight should it employ? (2) How is the node to compute the desired weight in a network lacking centralized control? The first question is answered by the Topology- and Load-Aware (TLA) allocation which defines target persistences that conform to both network topology and traffic load. Simulations show the TLA allocation to outperform IEEE 802.11, improving on the expectation and variation of delay, throughput, and drop rate. The second question is answered in the design of an Adaptive Topology- and Load-Aware Scheduled (ATLAS) MAC that computes the TLA allocation in a decentralized and adaptive manner. Simulation results show that ATLAS converges quickly on the TLA allocation, supporting highly dynamic networks. With these questions answered, a construction based on transversal designs is given for a variable-weight topology transparent schedule that allows nodes to dynamically and independently select weights to accommodate local topology and traffic load. The schedule maintains a guarantee on maximum delay when the maximum neighbourhood size is not too large. The schedule is integrated with the distributed computation of ATLAS to create VWATT. Simulations indicate that VWATT offers the stable performance characteristics of a scheduled MAC while adapting quickly to changes in topology and traffic load.
ContributorsLutz, Jonathan (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet R. (Thesis advisor) / Konjevod, Goran (Committee member) / Lloyd, Errol L. (Committee member) / Arizona State University (Publisher)
Created2013
150895-Thumbnail Image.png
Description
Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged

Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged subscribers. Minimal Perfect Hash Families (PHFs) have been shown to provide a basis for the construction of memory-efficient t-resilient Key Pre-distribution Schemes (KPSs) from multiple instances of 1-resilient KPSs. Using this technique, the task of constructing a large t-resilient BES is reduced to finding a near-minimal PHF of appropriate parameters. While combinatorial and probabilistic constructions exist for minimal PHFs with certain parameters, the complexity of constructing them in general is currently unknown. This thesis introduces a new type of hash family, called a Scattering Hash Family (ScHF), which is designed to allow for the scalable and ingredient-independent design of memory-efficient BESs for large parameters, specifically resilience and total number of subscribers. A general BES construction using ScHFs is shown, which constructs t-resilient KPSs from other KPSs of any resilience ≤w≤t. In addition to demonstrating how ScHFs can be used to produce BESs , this thesis explores several ScHF construction techniques. The initial technique demonstrates a probabilistic, non-constructive proof of existence for ScHFs . This construction is then derandomized into a direct, polynomial time construction of near-minimal ScHFs using the method of conditional expectations. As an alternative approach to direct construction, representing ScHFs as a k-restriction problem allows for the indirect construction of ScHFs via randomized post-optimization. Using the methods defined, ScHFs are constructed and the parameters' effects on solution size are analyzed. For large strengths, constructive techniques lose significant performance, and as such, asymptotic analysis is performed using the non-constructive existential results. This work concludes with an analysis of the benefits and disadvantages of BESs based on the constructed ScHFs. Due to the novel nature of ScHFs, the results of this analysis are used as the foundation for an empirical comparison between ScHF-based and PHF-based BESs . The primary bases of comparison are construction efficiency, key material requirements, and message transmission overhead.
ContributorsO'Brien, Devon James (Author) / Colbourn, Charles J (Thesis advisor) / Bazzi, Rida (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2012
150953-Thumbnail Image.png
Description
Cognitive Radios (CR) are designed to dynamically reconfigure their transmission and/or reception parameters to utilize the bandwidth efficiently. With a rapidly fluctuating radio environment, spectrum management becomes crucial for cognitive radios. In a Cognitive Radio Ad Hoc Network (CRAHN) setting, the sensing and transmission times of the cognitive radio play

Cognitive Radios (CR) are designed to dynamically reconfigure their transmission and/or reception parameters to utilize the bandwidth efficiently. With a rapidly fluctuating radio environment, spectrum management becomes crucial for cognitive radios. In a Cognitive Radio Ad Hoc Network (CRAHN) setting, the sensing and transmission times of the cognitive radio play a more important role because of the decentralized nature of the network. They have a direct impact on the throughput. Due to the tradeoff between throughput and the sensing time, finding optimal values for sensing time and transmission time is difficult. In this thesis, a method is proposed to improve the throughput of a CRAHN by dynamically changing the sensing and transmission times. To simulate the CRAHN setting, ns-2, the network simulator with an extension for CRAHN is used. The CRAHN extension module implements the required Primary User (PU) and Secondary User (SU) and other CR functionalities to simulate a realistic CRAHN scenario. First, this work presents a detailed analysis of various CR parameters, their interactions, their individual contributions to the throughput to understand how they affect the transmissions in the network. Based on the results of this analysis, changes to the system model in the CRAHN extension are proposed. Instantaneous throughput of the network is introduced in the new model, which helps to determine how the parameters should adapt based on the current throughput. Along with instantaneous throughput, checks are done for interference with the PUs and their transmission power, before modifying these CR parameters. Simulation results demonstrate that the throughput of the CRAHN with the adaptive sensing and transmission times is significantly higher as compared to that of non-adaptive parameters.
ContributorsBapat, Namrata Arun (Author) / Syrotiuk, Violet R. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
150488-Thumbnail Image.png
Description
Mobile ad hoc networks (MANETs) have attracted attention for mission critical applications. This dissertation investigates techniques of statistical monitoring and control for overhead reduction in a proactive MANET routing protocol. Proactive protocols transmit overhead periodically. Instead, we propose that the local conditions of a node should determine this transmission decision.

Mobile ad hoc networks (MANETs) have attracted attention for mission critical applications. This dissertation investigates techniques of statistical monitoring and control for overhead reduction in a proactive MANET routing protocol. Proactive protocols transmit overhead periodically. Instead, we propose that the local conditions of a node should determine this transmission decision. While the goal is to minimize overhead, a balance in the amount of overhead transmitted and the performance achieved is required. Statistical monitoring consists of techniques to determine if a characteristic has shifted away from an in-control state. A basic tool for monitoring is a control chart, a time-oriented representation of the characteristic. When a sample deviates outside control limits, a significant change has occurred and corrective actions are required to return to the in-control state. We investigate the use of statistical monitoring of local conditions in the Optimized Link State Routing (OLSR) protocol. Three versions are developed. In A-OLSR, each node uses a Shewhart chart to monitor betweenness of its two-hop neighbourhood. Betweenness is a social network metric that measures a node's influence; betweenness is larger when a node has more influence. Changes in topology are associated with changes in betweenness. We incorporate additional local node conditions including speed, density, packet arrival rate, and number of flows it forwards in A+-OLSR. Response Surface Methodology (RSM) is used to optimize timer values. As well, the Shewhart chart is replaced by an Exponentially Weighted Moving Average (EWMA) chart, which is more sensitive to small changes in the characteristic. It is known that control charts do not work as well in the presence of correlation. Hence, in A*-OLSR the autocorrelation in the time series is removed and an Auto-Regressive Integrated Moving Average (ARIMA) model found; this removes the dependence on node speed. A*-OLSR also extends monitoring to two characteristics concurrently using multivariate cumulative sum (MCUSUM) charts. The protocols are evaluated in simulation, and compared to OLSR and its variants. The techniques for statistical monitoring and control are general and have great potential to be applied to the adaptive control of many network protocols.
ContributorsShaukat, Kahkashan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Colbourn, Charles J (Committee member) / Montgomery, Douglas C. (Committee member) / Sarjoughian, Hessam S. (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
148193-Thumbnail Image.png
Description

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation are disguised as a hair salon app to maintain a low profile on the user’s phone. The HairHelp app features quick exit navigation, a secure database to store a user’s private and personal documents in case of emergency, and a checklist of safety planning measures. The steps taken in this project serve as the foundation for a larger project in the long term.

ContributorsShovkovy, Sophia (Author) / Balasooriya, Janaka (Thesis director) / Wilkey, Douglas (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148142-Thumbnail Image.png
Description

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of a static silhouette of a face and a wave-like form to represent the mouth. Audio content analysis was performed on audio sampled from the character’s voice lines. Pitch and amplitude derived from the analysis was used to animate the character’s visual features such as it’s brightness, color, and mouth movement. The mouth’s movement and color was manipulated with the audio’s pitch. The lights of Wave were controlled by the amplitude of the audio. Design considerations were made to accommodate those with visual disabilities such as color blindness and epilepsy. Overall the final audio visualization satisfied the project sponsor and built upon existing audio visualization work. User feedback will be a necessity for improving the audio visualization in the future.

ContributorsNguyen, Joshep D (Author) / Chavez-Echaegaray, Helen (Thesis director) / Waggoner, Trae (Committee member) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05