Matching Items (7)
Filtering by

Clear all filters

153544-Thumbnail Image.png
Description
The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation

The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation through state estimation (SE), controlling the system to operate reliably, and optimizing the system operation efficiency. The SCADA acquires the noisy measurements, such as voltage angle and magnitude, line power flows, and line current magnitude, from the remote terminal units (RTUs). These raw data are firstly sent to the SE, which filters all the noisy data and derives the best estimate of the system state. Then the estimated states are used for other EMS functions, such as contingency analysis, optimal power flow, etc.

In the existing state estimation process, there is no defense mechanism for any malicious attacks. Once the communication channel between the SCADA and RTUs is hijacked by the attacker, the attacker can perform a man-in-middle attack and send data of its choice. The only step that can possibly detect the attack during the state estimation process is the bad data detector. Unfortunately, even the bad data detector is unable to detect a certain type of attack, known as the false data injection (FDI) attacks.

Diagnosing the physical consequences of such attacks, therefore, is very important to understand system stability. In this thesis, theoretical general attack models for AC and DC attacks are given and an optimization problem for the worst-case overload attack is formulated. Furthermore, physical consequences of FDI attacks, based on both DC and AC model, are addressed. Various scenarios with different attack targets and system configurations are simulated. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsLiang, Jingwen (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Thesis advisor) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2015
153914-Thumbnail Image.png
Description
The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system

The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system is managed and monitored with a combination of

(a) supervisory control and data acquisition (SCADA); and (b) energy management

systems (EMSs) that process the collected data and make control and actuation de-

cisions using the collected data. However, at all levels of the hierarchy, both SCADA

and EMSs are vulnerable to cyber attacks. Furthermore, given the criticality of the

electric power infrastructure, cyber attacks can have severe economic and social con-

sequences.

This thesis focuses on cyber attacks on SCADA and EMS at the transmission

level of the electric power system. The goal is to study the consequences of three

classes of cyber attacks that can change topology data. These classes include: (i)

unobservable state-preserving cyber attacks that only change the topology data; (ii)

unobservable state-and-topology cyber-physical attacks that change both states and

topology data to enable a coordinated physical and cyber attack; and (iii) topology-

targeted man-in-the-middle (MitM) communication attacks that alter topology data

shared during inter-EMS communication. Specically, attack class (i) and (ii) focus on

the unobservable attacks on single regional EMS while class (iii) focuses on the MitM

attacks on communication links between regional EMSs. For each class of attacks,

the theoretical attack model and the implementation of attacks are provided, and the

worst-case attack and its consequences are exhaustively studied. In particularly, for

class (ii), a two-stage optimization problem is introduced to study worst-case attacks

that can cause a physical line over

ow that is unobservable in the cyber layer. The long-term implication and the system anomalies are demonstrated via simulation.

For attack classes (i) and (ii), both mathematical and experimental analyses sug-

gest that these unobservable attacks can be limited or even detected with resiliency

mechanisms including load monitoring, anomalous re-dispatches checking, and his-

torical data comparison. For attack class (iii), countermeasures including anomalous

tie-line interchange verication, anomalous re-dispatch alarms, and external contin-

gency lists sharing are needed to thwart such attacks.
ContributorsZhang, Jiazi (Author) / Sankar, Lalitha (Thesis advisor) / Hedman, Kory (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
157375-Thumbnail Image.png
Description
Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions.

I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS loop and explain an actual software platform built using the proposed architecture. I also explain in detail the power analysis libraries used for building the platform with examples and illustrations from the implemented application. Finally, I will use the platform to simulate FDI attacks on two synthetic power system test cases and analyze and visualize the consequences using the capabilities built into the platform.
ContributorsKhodadadeh, Roozbeh (Author) / Sankar, Lalitha (Thesis advisor) / Xue, Guoliang (Thesis advisor) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2019
137100-Thumbnail Image.png
Description
Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.
ContributorsCrider, Lauren Nicole (Author) / Cochran, Douglas (Thesis director) / Renaut, Rosemary (Committee member) / Kosut, Oliver (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
189335-Thumbnail Image.png
Description
Generative Adversarial Networks (GANs) have emerged as a powerful framework for generating realistic and high-quality data. In the original ``vanilla'' GAN formulation, two models -- the generator and discriminator -- are engaged in a min-max game and optimize the same value function. Despite offering an intuitive approach, vanilla GANs often

Generative Adversarial Networks (GANs) have emerged as a powerful framework for generating realistic and high-quality data. In the original ``vanilla'' GAN formulation, two models -- the generator and discriminator -- are engaged in a min-max game and optimize the same value function. Despite offering an intuitive approach, vanilla GANs often face stability challenges such as vanishing gradients and mode collapse. Addressing these common failures, recent work has proposed the use of tunable classification losses in place of traditional value functions. Although parameterized robust loss families, e.g. $\alpha$-loss, have shown promising characteristics as value functions, this thesis argues that the generator and discriminator require separate objective functions to achieve their different goals. As a result, this thesis introduces the $(\alpha_{D}, \alpha_{G})$-GAN, a parameterized class of dual-objective GANs, as an alternative approach to the standard vanilla GAN. The $(\alpha_{D}, \alpha_{G})$-GAN formulation, inspired by $\alpha$-loss, allows practitioners to tune the parameters $(\alpha_{D}, \alpha_{G}) \in [0,\infty)^{2}$ to provide a more stable training process. The objectives for the generator and discriminator in $(\alpha_{D}, \alpha_{G})$-GAN are derived, and the advantages of using these objectives are investigated. In particular, the optimization trajectory of the generator is found to be influenced by the choice of $\alpha_{D}$ and $\alpha_{G}$. Empirical evidence is presented through experiments conducted on various datasets, including the 2D Gaussian Mixture Ring, Celeb-A image dataset, and LSUN Classroom image dataset. Performance metrics such as mode coverage and Fréchet Inception Distance (FID) are used to evaluate the effectiveness of the $(\alpha_{D}, \alpha_{G})$-GAN compared to the vanilla GAN and state-of-the-art Least Squares GAN (LSGAN). The experimental results demonstrate that tuning $\alpha_{D} < 1$ leads to improved stability, robustness to hyperparameter choice, and competitive performance compared to LSGAN.
ContributorsOtstot, Kyle (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2023
187813-Thumbnail Image.png
Description
The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem

The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem explores the impact of social learning in collecting and trading unverifiable information where a data collector purchases data from users through a payment mechanism. Each user starts with a personal signal which represents the knowledge about the underlying state the data collector desires to learn. Through social interactions, each user also acquires additional information from his neighbors in the social network. It is revealed that both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation for a given total payment budget. In the second half, a federated learning scheme to train a global learning model with strategic agents, who are not bound to contribute their resources unconditionally, is considered. Since the agents are not obliged to provide their true stochastic gradient updates and the server is not capable of directly validating the authenticity of reported updates, the learning process may reach a noncooperative equilibrium. First, the actions of the agents are assumed to be binary: cooperative or defective. If the cooperative action is taken, the agent sends a privacy-preserved version of stochastic gradient signal. If the defective action is taken, the agent sends an arbitrary uninformative noise signal. Furthermore, this setup is extended into the scenarios with more general actions spaces where the quality of the stochastic gradient updates have a range of discrete levels. The proposed methodology evaluates each agent's stochastic gradient according to a reference gradient estimate which is constructed from the gradients provided by other agents, and rewards the agent based on that evaluation.
ContributorsAkbay, Abdullah Basar (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Committee member) / Kosut, Oliver (Committee member) / Ewaisha, Ahmed (Committee member) / Arizona State University (Publisher)
Created2023