Matching Items (3)
Filtering by

Clear all filters

137627-Thumbnail Image.png
Description
Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity

Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity to use metrics such as clustering coefficients and connected components to isolate representative trends in ice masses. Based upon this analysis, the structure of sea ice graphs differs at a statistically significant level from random graphs, and several regions show erratically decreasing trends in sea ice concentration.
ContributorsWallace-Patterson, Chloe Rae (Author) / Syrotiuk, Violet (Thesis director) / Colbourn, Charles (Committee member) / Montgomery, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
191035-Thumbnail Image.png
Description
With the explosion of autonomous systems under development, complex simulation models are being tested and relied on far more than in the recent past. This uptick in autonomous systems being modeled then tested magnifies both the advantages and disadvantages of simulation experimentation. An inherent problem in autonomous systems development is

With the explosion of autonomous systems under development, complex simulation models are being tested and relied on far more than in the recent past. This uptick in autonomous systems being modeled then tested magnifies both the advantages and disadvantages of simulation experimentation. An inherent problem in autonomous systems development is when small changes in factor settings result in large changes in a response’s performance. These occurrences look like cliffs in a metamodel’s response surface and are referred to as performance mode boundary regions. These regions represent areas of interest in the autonomous system’s decision-making process. Therefore, performance mode boundary regions are areas of interest for autonomous systems developers.Traditional augmentation methods aid experimenters seeking different objectives, often by improving a certain design property of the factor space (such as variance) or a design’s modeling capabilities. While useful, these augmentation techniques do not target areas of interest that need attention in autonomous systems testing focused on the response. Boundary Explorer Adaptive Sampling Technique, or BEAST, is a set of design augmentation algorithms. The adaptive sampling algorithm targets performance mode boundaries with additional samples. The gap filling augmentation algorithm targets sparsely sampled areas in the factor space. BEAST allows for sampling to adapt to information obtained from pervious iterations of experimentation and target these regions of interest. Exploiting the advantages of simulation model experimentation, BEAST can be used to provide additional iterations of experimentation, providing clarity and high-fidelity in areas of interest along potentially steep gradient regions. The objective of this thesis is to research and present BEAST, then compare BEAST’s algorithms to other design augmentation techniques. Comparisons are made towards traditional methods that are already implemented in SAS Institute’s JMP software, or emerging adaptive sampling techniques, such as Range Adversarial Planning Tool (RAPT). The goal of this objective is to gain a deeper understanding of how BEAST works and where it stands in the design augmentation space for practical applications. With a gained understanding of how BEAST operates and how well BEAST performs, future research recommendations will be presented to improve BEAST’s capabilities.
ContributorsSimpson, Ryan James (Author) / Montgomery, Douglas (Thesis advisor) / Karl, Andrew (Committee member) / Pan, Rong (Committee member) / Pedrielli, Giulia (Committee member) / Wisnowski, James (Committee member) / Arizona State University (Publisher)
Created2024
161846-Thumbnail Image.png
Description
Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical

Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical systems (CPSs) has become a standard. While CPS enables unprecedented capabilities, it raises new challenges in system design, certification, control, and verification. When optimizing system performance computationally expensive simulation tools are often required, and search algorithms that sequentially interrogate a simulator to learn promising solutions are in great demand. This class of algorithms are black-box optimization techniques. However, the generality that makes black-box optimization desirable also causes computational efficiency difficulties when applied real problems. This thesis focuses on Bayesian optimization, a prominent black-box optimization family, and proposes new principles, translated in implementable algorithms, to scale Bayesian optimization to highly expensive, large scale problems. Four problem contexts are studied and approaches are proposed for practically applying Bayesian optimization concepts, namely: (1) increasing sample efficiency of a highly expensive simulator in the presence of other sources of information, where multi-fidelity optimization is used to leverage complementary information sources; (2) accelerating global optimization in the presence of local searches by avoiding over-exploitation with adaptive restart behavior; (3) scaling optimization to high dimensional input spaces by integrating Game theoretic mechanisms with traditional techniques; (4) accelerating optimization by embedding function structure when the reward function is a minimum of several functions. In the first context this thesis produces two multi-fidelity algorithms, a sample driven and model driven approach, and is implemented to optimize a serial production line; in the second context the Stochastic Optimization with Adaptive Restart (SOAR) framework is produced and analyzed with multiple applications to CPS falsification problems; in the third context the Bayesian optimization with sample fictitious play (BOFiP) algorithm is developed with an implementation in high-dimensional neural network training; in the last problem context the minimum surrogate optimization (MSO) framework is produced and combined with both Bayesian optimization and the SOAR framework with applications in simultaneous falsification of multiple CPS requirements.
ContributorsMathesen, Logan (Author) / Pedrielli, Giulia (Thesis advisor) / Candan, Kasim (Committee member) / Fainekos, Georgios (Committee member) / Gel, Esma (Committee member) / Montgomery, Douglas (Committee member) / Zabinsky, Zelda (Committee member) / Arizona State University (Publisher)
Created2021