Matching Items (2)
Filtering by

Clear all filters

141432-Thumbnail Image.png
Description

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local Moran’s I ) was then used to test for spatial dependence and to determine how clustered or dispersed points were arranged. Next, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on 10 June and nighttime on 17 October 2011) and Las Vegas (daytime on 6 July and nighttime on 27 August 2005) to examine day- and nighttime LST with regard to the spatial arrangement of anthropogenic and vegetation features. Local Moran’s I values of each land-cover type were spatially correlated to surface temperature. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, clustered spatial arrangements of anthropogenic land-cover types, especially impervious surfaces and open soil, elevate LST. These findings suggest that city planners and managers should, where possible, incorporate clustered grass and trees to disperse unmanaged soil and paved surfaces, and fill open unmanaged soil with vegetation. Our findings are in line with national efforts to augment and strengthen green infrastructure, complete streets, parking management, and transit-oriented development practices, and reduce sprawling, unwalkable housing development.

ContributorsMyint, Soe Win (Author) / Zheng, Baojuan (Author) / Talen, Emily (Author) / Fan, Chao (Author) / Kaplan, Shari (Author) / Middel, Ariane (Author) / Smith, Martin (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author)
Created2015-06-29
157264-Thumbnail Image.png
Description
Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of

Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.
ContributorsZhou, Xiran (Author) / Li, Wenwen (Thesis advisor) / Myint, Soe Win (Committee member) / Arundel, Samantha Thompson (Committee member) / Arizona State University (Publisher)
Created2019