Matching Items (109)
Filtering by

Clear all filters

152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
152302-Thumbnail Image.png
Description
The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to achieve greening of the data centers. This thesis deals with cooling energy management in data centers running data-processing frameworks. In particular, we propose ther- mal aware scheduling for MapReduce framework and its Hadoop implementation to reduce cooling energy in data centers. Data-processing frameworks run many low- priority batch processing jobs, such as background log analysis, that do not have strict completion time requirements; they can be delayed by a bounded amount of time. Cooling energy savings are possible by being able to temporally spread the workload, and assign it to the computing equipments which reduce the heat recirculation in data center room and therefore the load on the cooling systems. We implement our scheme in Hadoop and performs some experiments using both CPU-intensive and I/O-intensive workload benchmarks in order to evaluate the efficiency of our scheme. The evaluation results highlight that our thermal aware scheduling reduces hot-spots and makes uniform temperature distribution within the data center possible. Sum- marizing the contribution, we incorporated thermal awareness in Hadoop MapReduce framework by enhancing the native scheduler to make it thermally aware, compare the Thermal Aware Scheduler(TAS) with the Hadoop scheduler (FCFS) by running PageRank and TeraSort benchmarks in the BlueTool data center of Impact lab and show that there is reduction in peak temperature and decrease in cooling power using TAS over FCFS scheduler.
ContributorsKole, Sayan (Author) / Gupta, Sandeep (Thesis advisor) / Huang, Dijiang (Committee member) / Varsamopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2013
152495-Thumbnail Image.png
Description
Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server to enforce access policies on the data, services and other such resources fairly easily. It also accommodates new policies and changes to existing policies gracefully, thereby making it a potentially good mechanism for implementing access control in large systems, particularly in today's age of Cloud Computing. However management of the attributes in ABAC environment is an area that has been little touched upon. Having a mechanism to allow multiple ABAC based systems to share data and resources can go a long way in making ABAC scalable. At the same time each system should be able to specify their own attribute sets independently. In the research presented in this document a new mechanism is proposed that would enable users to share resources and data in a cloud environment using ABAC techniques in a distributed manner. The focus is mainly on decentralizing the access policy specifications for the shared data so that each data owner can specify the access policy independent of others. The concept of ontologies and semantic web is introduced in the ABAC paradigm that would help in giving a scalable structure to the attributes and also allow systems having different sets of attributes to communicate and share resources.
ContributorsPrabhu Verleker, Ashwin Narayan (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014
152956-Thumbnail Image.png
Description
Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However,

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However, as one of the most creative networking technologies, Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud computing environment because the lack of comprehensive development framework and processing flow. Simply migration from traditional IDS/IPS systems to SDN environment are not effective enough for detecting and defending malicious attacks. Hence, in this thesis, we present an IPS development framework to help user easily design and implement their defensive systems in cloud system by SDN technology. This framework enables SDN approaches to enhance the system security and performance. A Traffic Information Platform (TIP) is proposed as the cornerstone with several upper layer security modules such as Detection, Analysis and Prevention components. Benefiting from the flexible, compatible and programmable features of SDN, Customized Detection Engine, Network Topology Finder, Source Tracer and further user-developed security appliances are plugged in our framework to construct a SDN-based defensive system. Two main categories Python-based APIs are designed to support developers for further development. This system is designed and implemented based on the POX controller and Open vSwitch in the cloud computing environment. The efficiency of this framework is demonstrated by a sample IPS implementation and the performance of our framework is also evaluated.
ContributorsXiong, Zhengyang (Author) / Huang, Dijiang (Thesis advisor) / Xue, Guoliang (Committee member) / Dalvucu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
153335-Thumbnail Image.png
Description
With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands.

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices.

This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.
ContributorsDsouza, Clinton (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2015
153094-Thumbnail Image.png
Description
Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks.

Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only thing which the user can do is choose not to install a particular application based on the requirements. Given the all or nothing choice, users succumb to pressures and needs to accept permissions requested. This thesis proposes a couple of ways for providing the users finer grained control of application privileges. The same methods can be used to evade the Permission Re-delegation attack.

This thesis also proposes and implements a novel methodology in Android that can be used to control the access privileges of an Android application, taking into consideration the context of the running application. This application-context based permission usage is further used to analyze a set of sample applications. We found the evidence of applications spoofing or divulging user sensitive information such as location information, contact information, phone id and numbers, in the background. Such activities can be used to track users for a variety of privacy-intrusive purposes. We have developed implementations that minimize several forms of privacy leaks that are routinely done by stock applications.
ContributorsGollapudi, Narasimha Aditya (Author) / Dasgupta, Partha (Thesis advisor) / Xue, Guoliang (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2014
153105-Thumbnail Image.png
Description
Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than

Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than calling server as the middle man. The world is changing from plug-in to web-browser. However, the WebRTC have not been widely used for school education.

By taking into consideration of the WebRTC solution for data transferring, we propose a new Cloud based interactive multimedia which enables virtual lab learning environment. Three modules were proposed along with an efficient solution for achieving optimized network bandwidth. The One-to-Many communication was introduced in the video conferencing and scalability was tested for the application. The key technical contribution is to establish a sufficient system that designed to utilize the WebRTC in its best way in educational world in the Vlab platform and reduces the tool cost and improves online learning experience.
ContributorsLi, Qingyun (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014
153126-Thumbnail Image.png
Description
The increasing number of continually connected mobile persons has created an environment conducive to real time user data gathering for many uses both public and private in nature. Publicly, one can envision no longer requiring a census to determine the demographic composition of the country and its sub regions. The

The increasing number of continually connected mobile persons has created an environment conducive to real time user data gathering for many uses both public and private in nature. Publicly, one can envision no longer requiring a census to determine the demographic composition of the country and its sub regions. The information provided is vastly more up to date than that of a census and allows civil authorities to be more agile and preemptive with planning. Privately, advertisers take advantage of a persons stated opinions, demographics, and contextual (where and when) information in order to formulate and present pertinent offers.

Regardless of its use this information can be sensitive in nature and should therefore be under the control of the user. Currently, a user has little say in the manner that their information is processed once it has been released. An ad-hoc approach is currently in use, where the location based service providers each maintain their own policy over personal information usage.

In order to allow more user control over their personal information while still providing for targeted advertising, a systematic approach to the release of the information is needed. It is for that reason we propose a User-Centric Context Aware Spatiotemporal Anonymization framework. At its core the framework will unify the current spatiotemporal anonymization with that of traditional anonymization so that user specified anonymization requirement is met or exceeded while allowing for more demographic information to be released.
ContributorsSanchez, Michael Andrew (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014
153147-Thumbnail Image.png
Description
The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of the malware sample in order to protect computer systems from

The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of the malware sample in order to protect computer systems from these attacks. The large number of new malware samples received daily by computer security companies require Security Analysts to quickly determine the type, threat, and countermeasure for newly identied samples. Our approach provides for a visualization tool to assist the Security Analyst in these tasks that allows the Analyst to visually identify relationships between malware samples.

This approach consists of three steps. First, the received samples are processed by a sandbox environment to perform a dynamic behavior analysis. Second, the reports of the dynamic behavior analysis are parsed to extract identifying features which are matched against other known and analyzed samples. Lastly, those matches that are determined to express a relationship are visualized as an edge connected pair of nodes in an undirected graph.
ContributorsHolmes, James Edward (Author) / Ahn, Gail-Joon (Thesis advisor) / Dasgupta, Partha (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2014