Matching Items (30)
Filtering by

Clear all filters

155226-Thumbnail Image.png
Description
Cyberbullying is a phenomenon which negatively affects individuals. Victims of the cyberbullying suffer from a range of mental issues, ranging from depression to low self-esteem. Due to the advent of the social media platforms, cyberbullying is becoming more and more prevalent. Traditional mechanisms to fight against cyberbullying include use of

Cyberbullying is a phenomenon which negatively affects individuals. Victims of the cyberbullying suffer from a range of mental issues, ranging from depression to low self-esteem. Due to the advent of the social media platforms, cyberbullying is becoming more and more prevalent. Traditional mechanisms to fight against cyberbullying include use of standards and guidelines, human moderators, use of blacklists based on profane words, and regular expressions to manually detect cyberbullying. However, these mechanisms fall short in social media and do not scale well. Users in social media use intentional evasive expressions like, obfuscation of abusive words, which necessitates the development of a sophisticated learning framework to automatically detect new cyberbullying behaviors. Cyberbullying detection in social media is a challenging task due to short, noisy and unstructured content and intentional obfuscation of the abusive words or phrases by social media users. Motivated by sociological and psychological findings on bullying behavior and its correlation with emotions, we propose to leverage the sentiment information to accurately detect cyberbullying behavior in social media by proposing an effective optimization framework. Experimental results on two real-world social media datasets show the superiority of the proposed framework. Further studies validate the effectiveness of leveraging sentiment information for cyberbullying detection.
ContributorsDani, Harsh (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2017
155252-Thumbnail Image.png
Description
Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source in deriving implicit information

for social data mining. However, the vast majority of existing studies overwhelmingly

focus on positive links between users while negative links are also prevailing in real-

world social networks such as distrust relations in Epinions and foe links in Slashdot.

Though recent studies show that negative links have some added value over positive

links, it is dicult to directly employ them because of its distinct characteristics from

positive interactions. Another challenge is that label information is rather limited

in social media as the labeling process requires human attention and may be very

expensive. Hence, alternative criteria are needed to guide the learning process for

many tasks such as feature selection and sentiment analysis.

To address above-mentioned issues, I study two novel problems for signed social

networks mining, (1) unsupervised feature selection in signed social networks; and

(2) unsupervised sentiment analysis with signed social networks. To tackle the first problem, I propose a novel unsupervised feature selection framework SignedFS. In

particular, I model positive and negative links simultaneously for user preference

learning, and then embed the user preference learning into feature selection. To study the second problem, I incorporate explicit sentiment signals in textual terms and

implicit sentiment signals from signed social networks into a coherent model Signed-

Senti. Empirical experiments on real-world datasets corroborate the effectiveness of

these two frameworks on the tasks of feature selection and sentiment analysis.
ContributorsCheng, Kewei (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2017
155262-Thumbnail Image.png
Description
The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming NBA match between two specific teams according to their historical

The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming NBA match between two specific teams according to their historical data is especially attractive. With rapid development of machine learning techniques, it opens the door to examine the correlation between statistical data and outcome of matches. However, existing methods typically make predictions before game starts. In-game prediction, or real-time prediction, has not yet been sufficiently studied. During a match, data are cumulatively generated, and with the accumulation, data become more comprehensive and potentially embrace more predictive power, so that prediction accuracy may dynamically increase with a match goes on. In this study, I design game-level and player-level features based on realtime data of NBA matches and apply a machine learning model to investigate the possibility and characteristics of using real-time prediction in NBA matches.
ContributorsLin, Rongyu (Author) / Tong, Hanghang (Thesis advisor) / He, Jingrui (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017
155726-Thumbnail Image.png
Description
Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found

Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity of the website and analyze their robustness in classifying a phishing website. Our emphasis is on determining the predictive performance of robust features. We evaluate the classification accuracy when using the entire feature set and when URL features or site popularity features are excluded from the feature set and show how our approach can be used to effectively predict specific types of phishing attacks such as shortened URLs and randomized URLs. Using both decision table classifiers and neural network classifiers, our results indicate that robust features seem to have enough predictive power to be used in practice.
ContributorsNamasivayam, Bhuvana Lalitha (Author) / Bazzi, Rida (Thesis advisor) / Zhao, Ziming (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017
158485-Thumbnail Image.png
Description
Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size, they inevitably suffer a yet unavoidable technical failure: mode collapse. GAN-generated data is not nearly as diverse as the real-world

Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size, they inevitably suffer a yet unavoidable technical failure: mode collapse. GAN-generated data is not nearly as diverse as the real-world data the network is trained on; this work shows that this effect is especially drastic when the training data is highly non-uniform. Specifically, GANs learn to exacerbate the social biases which exist in the training set along sensitive axes such as gender and race. In an age where many datasets are curated from web and social media data (which are almost never balanced), this has dangerous implications for downstream tasks using GAN-generated synthetic data, such as data augmentation for classification. This thesis presents an empirical demonstration of this phenomenon and illustrates its real-world ramifications. It starts by showing that when asked to sample images from an illustrative dataset of engineering faculty headshots from 47 U.S. universities, unfortunately skewed toward white males, a DCGAN’s generator “imagines” faces with light skin colors and masculine features. In addition, this work verifies that the generated distribution diverges more from the real-world distribution when the training data is non-uniform than when it is uniform. This work also shows that a conditional variant of GAN is not immune to exacerbating sensitive social biases. Finally, this work contributes a preliminary case study on Snapchat’s explosively popular GAN-enabled “My Twin” selfie lens, which consistently lightens the skin tone for women of color in an attempt to make faces more feminine. The results and discussion of the study are meant to caution machine learning practitioners who may unsuspectingly increase the biases in their applications.
ContributorsJain, Niharika (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Manikonda, Lydia (Committee member) / Arizona State University (Publisher)
Created2020
Description
Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion on these networks, and the social media platforms to remove

Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion on these networks, and the social media platforms to remove these accounts. Despite this acknowledged issue, bot presence continues to remain on social media networks. So, it has now become necessary to monitor different bots over time to identify changes in their activities or domain. Since monitoring individual accounts is not feasible, because the bots may get suspended or deleted, bots should be observed in smaller groups, based on their characteristics, as types. Yet, most of the existing research on social media bot detection is focused on labeling bot accounts by only distinguishing them from human accounts and may ignore differences between individual bot accounts. The consideration of these bots' types may be the best solution for researchers and social media companies alike as it is in both of their best interests to study these types separately. However, up until this point, bot categorization has only been theorized or done manually. Thus, the goal of this research is to automate this process of grouping bots by their respective types. To accomplish this goal, the author experimentally demonstrates that it is possible to use unsupervised machine learning to categorize bots into types based on the proposed typology by creating an aggregated dataset, subsequent to determining that the accounts within are bots, and utilizing an existing typology for bots. Having the ability to differentiate between types of bots automatically will allow social media experts to analyze bot activity, from a new perspective, on a more granular level. This way, researchers can identify patterns related to a given bot type's behaviors over time and determine if certain detection methods are more viable for that type.
ContributorsDavis, Matthew William (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Morstatter, Fred (Committee member) / Arizona State University (Publisher)
Created2019
158252-Thumbnail Image.png
Description
Background: Process mining (PM) using event log files is gaining popularity in healthcare to investigate clinical pathways. But it has many unique challenges. Clinical Pathways (CPs) are often complex and unstructured which results in spaghetti-like models. Moreover, the log files collected from the electronic health record (EHR) often contain noisy

Background: Process mining (PM) using event log files is gaining popularity in healthcare to investigate clinical pathways. But it has many unique challenges. Clinical Pathways (CPs) are often complex and unstructured which results in spaghetti-like models. Moreover, the log files collected from the electronic health record (EHR) often contain noisy and incomplete data. Objective: Based on the traditional process mining technique of using event logs generated by an EHR, observational video data from rapid ethnography (RE) were combined to model, interpret, simplify and validate the perioperative (PeriOp) CPs. Method: The data collection and analysis pipeline consisted of the following steps: (1) Obtain RE data, (2) Obtain EHR event logs, (3) Generate CP from RE data, (4) Identify EHR interfaces and functionalities, (5) Analyze EHR functionalities to identify missing events, (6) Clean and preprocess event logs to remove noise, (7) Use PM to compute CP time metrics, (8) Further remove noise by removing outliers, (9) Mine CP from event logs and (10) Compare CPs resulting from RE and PM. Results: Four provider interviews and 1,917,059 event logs and 877 minutes of video ethnography recording EHRs interaction were collected. When mapping event logs to EHR functionalities, the intraoperative (IntraOp) event logs were more complete (45%) when compared with preoperative (35%) and postoperative (21.5%) event logs. After removing the noise (496 outliers) and calculating the duration of the PeriOp CP, the median was 189 minutes and the standard deviation was 291 minutes. Finally, RE data were analyzed to help identify most clinically relevant event logs and simplify spaghetti-like CPs resulting from PM. Conclusion: The study demonstrated the use of RE to help overcome challenges of automatic discovery of CPs. It also demonstrated that RE data could be used to identify relevant clinical tasks and incomplete data, remove noise (outliers), simplify CPs and validate mined CPs.
ContributorsDeotale, Aditya Vijay (Author) / Liu, Huan (Thesis advisor) / Grando, Maria (Thesis advisor) / Manikonda, Lydia (Committee member) / Arizona State University (Publisher)
Created2020
153618-Thumbnail Image.png
Description
A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms

A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms to tackle this problem.

Besides the common feature above, communities within a social network have two unique characteristics: communities are mostly small and overlapping. Unfortunately, many traditional algorithms have difficulty recognizing these small communities (often called the resolution limit problem) as well as overlapping communities.

In this work, two enhanced community detection techniques are proposed for re-working existing community detection algorithms to find small communities in social networks. One method is to modify the modularity measure within the framework of the traditional Newman-Girvan algorithm so that more small communities can be detected. The second method is to incorporate a preprocessing step into existing algorithms by changing edge weights inside communities. Both methods help improve community detection performance while maintaining or improving computational efficiency.
ContributorsWang, Ran (Author) / Liu, Huan (Thesis advisor) / Sen, Arunabha (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2015
153858-Thumbnail Image.png
Description
Browsing Twitter users, or browsers, often find it increasingly cumbersome to attach meaning to tweets that are displayed on their timeline as they follow more and more users or pages. The tweets being browsed are created by Twitter users called originators, and are of some significance to the browser who

Browsing Twitter users, or browsers, often find it increasingly cumbersome to attach meaning to tweets that are displayed on their timeline as they follow more and more users or pages. The tweets being browsed are created by Twitter users called originators, and are of some significance to the browser who has chosen to subscribe to the tweets from the originator by following the originator. Although, hashtags are used to tag tweets in an effort to attach context to the tweets, many tweets do not have a hashtag. Such tweets are called orphan tweets and they adversely affect the experience of a browser.

A hashtag is a type of label or meta-data tag used in social networks and micro-blogging services which makes it easier for users to find messages with a specific theme or content. The context of a tweet can be defined as a set of one or more hashtags. Users often do not use hashtags to tag their tweets. This leads to the problem of missing context for tweets. To address the problem of missing hashtags, a statistical method was proposed which predicts most likely hashtags based on the social circle of an originator.

In this thesis, we propose to improve on the existing context recovery system by selectively limiting the candidate set of hashtags to be derived from the intimate circle of the originator rather than from every user in the social network of the originator. This helps in reducing the computation, increasing speed of prediction, scaling the system to originators with large social networks while still preserving most of the accuracy of the predictions. We also propose to not only derive the candidate hashtags from the social network of the originator but also derive the candidate hashtags based on the content of the tweet. We further propose to learn personalized statistical models according to the adoption patterns of different originators. This helps in not only identifying the personalized candidate set of hashtags based on the social circle and content of the tweets but also in customizing the hashtag adoption pattern to the originator of the tweet.
ContributorsMallapura Umamaheshwar, Tejas (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015
190815-Thumbnail Image.png
Description
Visual Question Answering (VQA) is an increasingly important multi-modal task where models must answer textual questions based on visual image inputs. Numerous VQA datasets have been proposed to train and evaluate models. However, existing benchmarks exhibit a unilateral focus on textual distribution shifts rather than joint shifts across modalities. This

Visual Question Answering (VQA) is an increasingly important multi-modal task where models must answer textual questions based on visual image inputs. Numerous VQA datasets have been proposed to train and evaluate models. However, existing benchmarks exhibit a unilateral focus on textual distribution shifts rather than joint shifts across modalities. This is suboptimal for properly assessing model robustness and generalization. To address this gap, a novel multi-modal VQA benchmark dataset is introduced for the first time. This dataset combines both visual and textual distribution shifts across training and test sets. Using this challenging benchmark exposes vulnerabilities in existing models relying on spurious correlations and overfitting to dataset biases. The novel dataset advances the field by enabling more robust model training and rigorous evaluation of multi-modal distribution shift generalization. In addition, a new few-shot multi-modal prompt fusion model is proposed to better adapt models for downstream VQA tasks. The model incorporates a prompt encoder module and dual-path design to align and fuse image and text prompts. This represents a novel prompt learning approach tailored for multi-modal learning across vision and language. Together, the introduced benchmark dataset and prompt fusion model address key limitations around evaluating and improving VQA model robustness. The work expands the methodology for training models resilient to multi-modal distribution shifts.
ContributorsJyothi Unni, Suraj (Author) / Liu, Huan (Thesis advisor) / Davalcu, Hasan (Committee member) / Bryan, Chris (Committee member) / Arizona State University (Publisher)
Created2023