Matching Items (34)
Filtering by

Clear all filters

150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
150359-Thumbnail Image.png
Description
S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic (MTL) to describe the user specifications for the hybrid systems. We then try to falsify the MTL specification using global minimization of robustness metric. Global minimization is carried out using stochastic optimization algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO) algorithms. Irrespective of the type of the model we provide as an input to S-Taliro, the user needs to specify the MTL specification, the initial conditions and the bounds on the inputs. S-Taliro then uses this information to generate test inputs which are used to simulate the system. The simulation trace is then provided as an input to Taliro which computes the robustness estimate of the MTL formula. Global minimization of this robustness metric is performed to generate new test inputs which again generate simulation traces which are closer to falsifying the MTL formula. Traces with negative robustness values indicate that the simulation trace falsified the MTL formula. Traces with positive robustness values are also of great importance because they indicate how robust the system is against the given specification. S-Taliro has been seamlessly integrated into the Matlab environment, which is extensively used for model-based development of control software. Moreover the toolbox has been developed in a modular fashion and therefore adding new optimization algorithms is easy and straightforward. In this work I present the architecture of S-Taliro and its working on a few benchmark problems.
ContributorsAnnapureddy, Yashwanth Singh Rahul (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2011
151780-Thumbnail Image.png
Description
Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.
ContributorsPandya, Parth (Author) / Fainekos, Georgios (Thesis advisor) / Dasgupta, Partha (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2013
152179-Thumbnail Image.png
Description
As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.
ContributorsRaji Kermani, Ramtin (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2013
151431-Thumbnail Image.png
Description
Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.
ContributorsLu, He (Author) / Lee, Yann-Hang (Thesis advisor) / Fainekos, Georgios (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
151527-Thumbnail Image.png
Description
Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation of effective, yet low-cost protection mechanism. The basic idea is that, there is a high probability that a soft-fault in program execution will eventually alter the control flow of the program. Therefore just by making sure that the control flow of the program is correct, significant protection can be achieved. More than a dozen techniques for CFC have been developed over the last several decades, ranging from hardware techniques, software techniques, and hardware-software hybrid techniques as well. Our analysis shows that existing CFC techniques are not only ineffective in protecting from soft errors, but cause additional power and performance overheads. For this analysis, we develop and validate a simulation based experimental setup to accurately and quantitatively estimate the architectural vulnerability of a program execution on a processor micro-architecture. We model the protection achieved by various state-of-the-art CFC techniques in this quantitative vulnerability estimation setup, and find out that software only CFC protection schemes (CFCSS, CFCSS+NA, CEDA) increase system vulnerability by 18% to 21% with 17% to 38% performance overhead. Hybrid CFC protection (CFEDC) increases vulnerability by 5%, while the vulnerability remains almost the same for hardware only CFC protection (CFCET); notwithstanding the hardware overheads of design cost, area, and power incurred in the hardware modifications required for their implementations.
ContributorsRhisheekesan, Abhishek (Author) / Shrivastava, Aviral (Thesis advisor) / Colbourn, Charles Joseph (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
149543-Thumbnail Image.png
Description
Debugging is a hard task. Debugging multi-threaded applications with their inherit non-determinism is all the more difficult. Non-determinism of any kind adds to the difficulty of cyclic debugging. In Android applications which are written in Java, threads and concurrency constructs introduce non-determinism to the program execution. Even with the same

Debugging is a hard task. Debugging multi-threaded applications with their inherit non-determinism is all the more difficult. Non-determinism of any kind adds to the difficulty of cyclic debugging. In Android applications which are written in Java, threads and concurrency constructs introduce non-determinism to the program execution. Even with the same input, consecutive runs may not be the same and reproducing the same bug is a challenging task. This makes it difficult to understand and analyze the execution behavior or to understand the source of a failing execution. This thesis introduces a replay mechanism for Android applications written in Java and is based on the Lamport Clock. This tool provides the user with a controlled debugging environment, where the program execution follows the identical partially ordered happened-before dependency among threads, as during the recorded execution. In this, certain significant events like thread creation, synchronization etc. are recorded during run-time. They can later be replayed off-line, as many times as needed to pinpoint and fix an error in the application. It is software based approach and has been implemented by modifying the Dalvik Virtual Machine in the Android platform. The method of replay described in this thesis is independent of the underlying operating system scheduler.
ContributorsGirme, Rohit (Author) / Lee, Yann-Hang (Thesis advisor) / Chatha, Karamvir (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149518-Thumbnail Image.png
Description
Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share

Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share resources, and provide context-aware services. This dissertation focuses on collaboration in ENS to provide smart services. However, there are several challenges because the system must be - scalable to a huge number of devices; robust against noise, loss and failure; and secure despite communicating with strangers. To address these challenges, first, the dissertation focuses on designing a mobile gateway called Mobile Edge Computing Device (MECD) for Ubiquitous Sensor Networks (USN), a type of ENS. In order to reduce communication overhead with the server, an MECD is designed to provide local and distributed management of a network and data associated with a moving object (e.g., a person, car, pet). Furthermore, it supports collaboration with neighboring MECDs. The MECD is developed and tested for monitoring containers during shipment from Singapore to Taiwan and reachability to the remote server was a problem because of variance in connectivity (caused by high temperature variance) and high interference. The unreachability problem is addressed by using a mesh networking approach for collaboration of MECDs in sending data to a server. A hierarchical architecture is proposed in this regard to provide multi-level collaboration using dynamic mesh networks of MECDs at one layer. The mesh network is evaluated for an intelligent container scenario and results show complete connectivity with the server for temperature range from 25°C to 65°C. Finally, the authentication of mobile and pervasive devices in ENS for secure collaboration is investigated. This is a challenging problem because mutually unknown devices must be verified without knowledge of each other's identity. A self-organizing region-based authentication technique is proposed that uses environmental sound to autonomously verify if two devices are within the same region. The experimental results show sound could accurately authenticate devices within a small region.
ContributorsKim, Su-jin (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Dasgupta, Partha (Committee member) / Davulcu, Hasan (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2010
168714-Thumbnail Image.png
Description
Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices.

Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices. For instance, the intersection management of Connected Autonomous Vehicles (CAVs) requires running computationally intensive object recognition algorithms on low-power traffic cameras. This dissertation aims to study the effect of a dynamic hardware and software approach to address this issue. Characteristics of real-world applications can facilitate this dynamic adjustment and reduce the computation. Specifically, this dissertation starts with a dynamic hardware approach that adjusts itself based on the toughness of input and extracts deeper features if needed. Next, an adaptive learning mechanism has been studied that use extracted feature from previous inputs to improve system performance. Finally, a system (ARGOS) was proposed and evaluated that can be run on embedded systems while maintaining the desired accuracy. This system adopts shallow features at inference time, but it can switch to deep features if the system desires a higher accuracy. To improve the performance, ARGOS distills the temporal knowledge from deep features to the shallow system. Moreover, ARGOS reduces the computation furthermore by focusing on regions of interest. The response time and mean average precision are adopted for the performance evaluation to evaluate the proposed ARGOS system.
ContributorsFarhadi, Mohammad (Author) / Yang, Yezhou (Thesis advisor) / Vrudhula, Sarma (Committee member) / Wu, Carole-Jean (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2022
168720-Thumbnail Image.png
Description
Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine

Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine learning algorithms designed for combating hate speech were also found biased against underrepresented and disadvantaged groups. In response, researchers and organizations have been working to publish principles and regulations for the responsible use of AI. However, these conceptual principles also need to be turned into actionable algorithms to materialize AI for good. The broad aim of my research is to design AI systems that responsibly serve users and develop applications with social impact. This dissertation seeks to develop the algorithmic solutions for Socially Responsible AI (SRAI), a systematic framework encompassing the responsible AI principles and algorithms, and the responsible use of AI. In particular, it first introduces an interdisciplinary definition of SRAI and the AI responsibility pyramid, in which four types of AI responsibilities are described. It then elucidates the purpose of SRAI: how to bridge from the conceptual definitions to responsible AI practice through the three human-centered operations -- to Protect and Inform users, and Prevent negative consequences. They are illustrated in the social media domain given that social media has revolutionized how people live but has also contributed to the rise of many societal issues. The three representative tasks for each dimension are cyberbullying detection, disinformation detection and dissemination, and unintended bias mitigation. The means of SRAI is to develop responsible AI algorithms. Many issues (e.g., discrimination and generalization) can arise when AI systems are trained to improve accuracy without knowing the underlying causal mechanism. Causal inference, therefore, is intrinsically related to understanding and resolving these challenging issues in AI. As a result, this dissertation also seeks to gain an in-depth understanding of AI by looking into the precise relationships between causes and effects. For illustration, it introduces a recent work that applies deep learning to estimating causal effects and shows that causal learning algorithms can outperform traditional methods.
ContributorsCheng, Lu (Author) / Liu, Huan (Thesis advisor) / Varshney, Kush R. (Committee member) / Silva, Yasin N. (Committee member) / Wu, Carole-Jean (Committee member) / Candan, Kasim S. (Committee member) / Arizona State University (Publisher)
Created2022