Matching Items (36)
Filtering by

Clear all filters

149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
150447-Thumbnail Image.png
Description
Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack

Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack of tools for visualizing urban areas at night. This is mainly due to difficulties in gathering the light system data, placing the light systems at suitable locations, and rendering millions of lights with complex light intensity distributions (LID). Unlike daytime images, a city can have millions of light sources at night, including street lights, illuminated signs, and light shed from building interiors through windows. In this paper, a Procedural Lighting tool (PL), which predicts the positions and properties of street lights, is presented. The PL tool is used to accomplish three aims: (1) to generate vector data layers for geographic information systems (GIS) with statistically estimated information on lighting designs for streets, as well as the locations, orientations, and models for millions of streetlights; (2) to generate geo-referenced raster data to suitable for use as light maps that cover a large scale urban area so that the effect of millions of street light can be accurately rendered at real time, and (3) to extend existing 3D models by generating detailed light-maps that can be used as UV-mapped textures to render the model. An interactive graphical user interface (GUI) for configuring and previewing lights from a Light System Database (LDB) is also presented. The GUI includes physically accurate information about LID and also the lights' spectral power distributions (SPDs) so that a light-map can be generated for use with any sensor if the sensors luminosity function is known. Finally, for areas where more detail is required, a tool has been developed for editing and visualizing light effects over a 3D building from many light sources including area lights and windows. The above components are integrated in the PL tool to produce a night time urban view for not only a large-scale area but also a detail of a city building.
ContributorsChuang, Chia-Yuan (Author) / Femiani, John (Thesis advisor) / Razdan, Anshuman (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2011
Description
Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a tendency to spend more time practicing. As such, learning software has emerged in the past several decades focusing on providing a wide range of examples, practice problems, and situations for users to exercise their skills. Notably, math students have benefited from software that procedurally generates a virtually infinite number of practice problems and their corresponding solutions. This allows for instantaneous feedback and automatic generation of tests and quizzes. Of course, this is only possible because software is capable of generating and verifying a virtually endless supply of sample problems across a wide range of topics within mathematics. While English learning software has progressed in a similar manner, it faces a series of hurdles distinctly different from those of mathematics. In particular, there is a wide range of exception cases present in English grammar. Some words have unique spellings for their plural forms, some words have identical spelling for plural forms, and some words are conjugated differently for only one particular tense or person-of-speech. These issues combined make the problem of generating grammatically correct sentences complicated. To compound to this problem, the grammar rules in English are vast, and often depend on the context in which they are used. Verb-tense agreement (e.g. "I eat" vs "he eats"), and conjugation of irregular verbs (e.g. swim -> swam) are common examples. This thesis presents an algorithm designed to randomly generate a virtually infinite number of practice problems for students of English as a second language. This approach differs from other generation approaches by generating based on a context set by educators, so that problems can be generated in the context of what students are currently learning. The algorithm is validated through a study in which over 35 000 sentences generated by the algorithm are verified by multiple grammar checking algorithms, and a subset of the sentences are validated against 3 education standards by a subject matter expert in the field. The study found that this approach has a significantly reduced grammar error ratio compared to other generation algorithms, and shows potential where context specification is concerned.
ContributorsMoore, Zachary Christian (Author) / Amresh, Ashish (Thesis director) / Nelson, Brian (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132566-Thumbnail Image.png
Description
ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental curriculum to prepare students for the technical interview process. The

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental curriculum to prepare students for the technical interview process. The trial run of the curriculum was received positively by study participants, who experienced an increase in confidence over the duration of the workshop.
ContributorsSchmidt, Julia J (Author) / Roscoe, Rod (Thesis director) / Bansal, Srividya (Committee member) / Software Engineering (Contributor) / Human Systems Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171562-Thumbnail Image.png
Description
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose

Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose to utilize these opportunities to self-assess their learning progress and practice their skill. My objective in this thesis is to understand to what extent self-assess process can impact novice programmers learning and what advanced learning technologies can I provide to enhance the learner’s outcome and the progress. In this dissertation, I conducted a series of studies to investigate learning analytics and students’ behaviors in working on self-assessments and reflection opportunities. To enable this objective, I designed a personalized learning platform named QuizIT that provides daily quizzes to support learners in the computer science domain. QuizIT adopts an Open Social Student Model (OSSM) that supports personalized learning and serves as a self-assessment system. It aims to ignite self-regulating behavior and engage students in the self-assessment and reflective procedure. I designed and integrated the personalized practice recommender to the platform to investigate the self-assessment process. I also evaluated the self-assessment behavioral trails as a predictor to the students’ performance. The statistical indicators suggested that the distributed reflections were associated with the learner's performance. I proceeded to address whether distributed reflections enable self-regulating behavior and lead to better learning in CS introductory courses. From the student interactions with the system, I found distinct behavioral patterns that showed early signs of the learners' performance trajectory. The utilization of the personalized recommender improved the student’s engagement and performance in the self-assessment procedure. When I focused on enhancing reflections impact during self-assessment sessions through weekly opportunities, the learners in the CS domain showed better self-regulating learning behavior when utilizing those opportunities. The weekly reflections provided by the learners were able to capture more reflective features than the daily opportunities. Overall, this dissertation demonstrates the effectiveness of the learning technologies, including adaptive recommender and reflection, to support novice programming learners and their self-assessing processes.
ContributorsAlzaid, Mohammed (Author) / Hsiao, Ihan (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / VanLehn, Kurt (Committee member) / Nelson, Brian (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2022
171448-Thumbnail Image.png
Description
The adoption of Open Source Software (OSS) by organizations has become a strategic need in a wide variety of software applications and platforms. Open Source has changed the way organizations develop, acquire, use, and commercialize software. Further, OSS projects often incorporate similar principles and practices as Agile and Lean software

The adoption of Open Source Software (OSS) by organizations has become a strategic need in a wide variety of software applications and platforms. Open Source has changed the way organizations develop, acquire, use, and commercialize software. Further, OSS projects often incorporate similar principles and practices as Agile and Lean software development projects. Contrary to traditional organizations, the environment in which these projects function has an impact on process-related elements like the flow of work and value definition. Process metrics are typically employed during Agile Software Engineering projects as a means of providing meaningful feedback. Investigating these metrics to see if OSS projects and communities can utilize them in a beneficial way thus becomes an interesting research topic. In that context, this exploratory research investigates whether well-established Agile and Lean software engineering metrics provide useful feedback about OSS projects. This knowledge will assist in educating the Open Source community about the applications of Agile Software Engineering and its variations in Open Source projects. Each of the Open Source projects included in this analysis has a substantial development team that maintains a mature, well-established codebase with process flow information. These OSS projects listed on GitHub are investigated by applying process flow metrics. The methodology used to collect these metrics and relevant findings are discussed in this thesis. This study also compares the results to distinctive Open Source project characteristics as part of the analysis. In this exploratory research best-fit versions of published Agile and Lean software process metrics are applied to OSS, and following these explorations, specific questions are further addressed using the data collected. This research's original contribution is to determine whether Agile and Lean process metrics are helpful in OSS, as well as the opportunities and obstacles that may arise when applying Agile and Lean principles to OSS.
ContributorsSuresh, Disha (Author) / Gary, Kevin (Thesis advisor) / Bansal, Srividya (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2022
190879-Thumbnail Image.png
Description
Open Information Extraction (OIE) is a subset of Natural Language Processing (NLP) that constitutes the processing of natural language into structured and machine-readable data. This thesis uses data in Resource Description Framework (RDF) triple format that comprises of a subject, predicate, and object. The extraction of RDF triples from

Open Information Extraction (OIE) is a subset of Natural Language Processing (NLP) that constitutes the processing of natural language into structured and machine-readable data. This thesis uses data in Resource Description Framework (RDF) triple format that comprises of a subject, predicate, and object. The extraction of RDF triples from natural language is an essential step towards importing data into web ontologies as part of the linked open data cloud on the Semantic web. There have been a number of related techniques for extraction of triples from plain natural language text including but not limited to ClausIE, OLLIE, Reverb, and DeepEx. This proposed study aims to reduce the dependency on conventional machine learning models since they require training datasets, and the models are not easily customizable or explainable. By leveraging a context-free grammar (CFG) based model, this thesis aims to address some of these issues while minimizing the trade-offs on performance and accuracy. Furthermore, a deep-dive is conducted to analyze the strengths and limitations of the proposed approach.
ContributorsSingh, Varun (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2023
171617-Thumbnail Image.png
Description
Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies

Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies of the same entity in different fields and domains has become very important for unifying and improving interoperability of data between these multiple domains. Many different techniques have been used over the year, including human assisted, automated and hybrid. In recent years with the availability of many machine learning techniques, researchers are trying to apply these techniques to solve the ontology alignment problem across different domains. In this study I have looked into the use of different machine learning techniques such as Support Vector Machine, Stochastic Gradient Descent, Random Forest etc. for solving ontology alignment problem with some of the most commonly used datasets found from the famous Ontology Alignment Evaluation Initiative (OAEI). I have proposed a method OntoAlign which demonstrates the importance of using different types of similarity measures for feature extraction from ontology data in order to achieve better results for ontology alignment.
ContributorsNasim, Tariq M (Author) / Bansal, Srividya (Thesis advisor) / Mehlhase, Alexandra (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2022
193701-Thumbnail Image.png
Description
This research project seeks to develop an innovative data visualization tool tailored for beginners to enhance their ability to interpret and present data effectively. Central to the approach is creating an intuitive, user-friendly interface that simplifies the data visualization process, making it accessible even to those with no prior background

This research project seeks to develop an innovative data visualization tool tailored for beginners to enhance their ability to interpret and present data effectively. Central to the approach is creating an intuitive, user-friendly interface that simplifies the data visualization process, making it accessible even to those with no prior background in the field. The tool will introduce users to standard visualization formats and expose them to various alternative chart types, fostering a deeper understanding and broader skill set in data representation. I plan to leverage innovative visualization techniques to ensure the tool is compelling and engaging. An essential aspect of my research will involve conducting comprehensive user studies and surveys to assess the tool's impact on enhancing data visualization competencies among the target audience. Through this, I aim to gather valuable insights into the tool's usability and effectiveness, enabling further refinements. The outcome of this project is a powerful and versatile tool that will be an invaluable asset for students, researchers, and professionals who regularly engage with data. By democratizing data visualization skills, I envisage empowering a broader audience to comprehend and creatively present complex data in a more meaningful and impactful manner.
ContributorsNarula, Jai (Author) / Bryan, Chris (Thesis advisor) / Seifi, Hasti (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2024
187457-Thumbnail Image.png
Description
Experience, whether personal or vicarious, plays an influential role in shaping human knowledge. Through these experiences, one develops an understanding of the world, which leads to learning. The process of gaining knowledge in higher education transcends beyond the passive transmission of knowledge from an expert to a novice. Instead, students

Experience, whether personal or vicarious, plays an influential role in shaping human knowledge. Through these experiences, one develops an understanding of the world, which leads to learning. The process of gaining knowledge in higher education transcends beyond the passive transmission of knowledge from an expert to a novice. Instead, students are encouraged to actively engage in every learning opportunity to achieve mastery in their chosen field. Evaluation of such mastery typically entails using educational assessments that provide objective measures to determine whether the student has mastered what is required of them. With the proliferation of educational technology in the modern classroom, information about students is being collected at an unprecedented rate, covering demographic, performance, and behavioral data. In the absence of analytics expertise, stakeholders may miss out on valuable insights that can guide future instructional interventions, especially in helping students understand their strengths and weaknesses. This dissertation presents Web-Programming Grading Assistant (WebPGA), a homegrown educational technology designed based on various learning sciences principles, which has been used by 6,000+ students. In addition to streamlining and improving the grading process, it encourages students to reflect on their performance. WebPGA integrates learning analytics into educational assessments using students' physical and digital footprints. A series of classroom studies is presented demonstrating the use of learning analytics and assessment data to make students aware of their misconceptions. It aims to develop ways for students to learn from previous mistakes made by themselves or by others. The key findings of this dissertation include the identification of effective strategies of better-performing students, the demonstration of the importance of individualized guidance during the reviewing process, and the likely impact of validating one's understanding of another's experiences. Moreover, the Personalized Recommender of Items to Master and Evaluate (PRIME) framework is introduced. It is a novel and intelligent approach for diagnosing one's domain mastery and providing tailored learning opportunities by allowing students to observe others' mistakes. Thus, this dissertation lays the groundwork for further improvement and inspires better use of available data to improve the quality of educational assessments that will benefit both students and teachers.
ContributorsParedes, Yancy Vance (Author) / Hsiao, I-Han (Thesis advisor) / VanLehn, Kurt (Thesis advisor) / Craig, Scotty D (Committee member) / Bansal, Srividya (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2023