Matching Items (13)
Filtering by

Clear all filters

152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
151429-Thumbnail Image.png
Description
A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition

A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition or coloring (respectively) is maintained. %The optima of the static cases cannot be achieved in the on-line setting. Both upper and lower bounds for the optimum of the number of chains needed to partition a width $w$ on-line poset exist. Kierstead's upper bound of $\frac{5^w-1}{4}$ was improved to $w^{14 \lg w}$ by Bosek and Krawczyk. This is improved to $w^{3+6.5 \lg w}$ by employing the First-Fit algorithm on a family of restricted posets (expanding on the work of Bosek and Krawczyk) . Namely, the family of ladder-free posets where the $m$-ladder is the transitive closure of the union of two incomparable chains $x_1\le\dots\le x_m$, $y_1\le\dots\le y_m$ and the set of comparabilities $\{x_1\le y_1,\dots, x_m\le y_m\}$. No upper bound on the number of colors needed to color a general on-line graph exists. To lay this fact plain, the performance of on-line coloring of trees is shown to be particularly problematic. There are trees that require $n$ colors to color on-line for any positive integer $n$. Furthermore, there are trees that usually require many colors to color on-line even if they are presented without any particular strategy. For restricted families of graphs, upper and lower bounds for the optimum number of colors needed to maintain an on-line coloring exist. In particular, circular arc graphs can be colored on-line using less than 8 times the optimum number from the static case. This follows from the work of Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
ContributorsSmith, Matthew Earl (Author) / Kierstead, Henry A (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
149703-Thumbnail Image.png
Description
This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based model is provided; it creates all edges deterministically and shows an asymptotically matching upper bound on the route length. The main goal is to improve greedy routing through a decentralized machine learning process. Two considered methods are based on weighted majority and an algorithm of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests are run on both artificial and real networks, with decentralized spectral graph embedding supplying geometric information for real networks where it is not intrinsically available. An important measure analyzed in this work is overpayment, the difference between the cost of the method and that of the shortest path. Adaptive routing overtakes greedy after about a hundred or fewer searches per node, consistently across different network sizes and types. Learning stabilizes, typically at overpayment of a third to a half of that by greedy. The problem is made more difficult by eliminating the knowledge of neighbors' locations or by introducing uncooperative nodes. Even under these conditions, the learned routes are usually better than the greedy routes. The second part of the dissertation is related to the community structure of unannotated networks. A modularity-based algorithm of Newman is extended to work with overlapping communities (including considerably overlapping communities), where each node locally makes decisions to which potential communities it belongs. To measure quality of a cover of overlapping communities, a notion of a node contribution to modularity is introduced, and subsequently the notion of modularity is extended from partitions to covers. The final part considers a problem of network anonymization, mostly by the means of edge deletion. The point of interest is utility preservation. It is shown that a concentration on the preservation of routing abilities might damage the preservation of community structure, and vice versa.
ContributorsBakun, Oleg (Author) / Konjevod, Goran (Thesis advisor) / Richa, Andrea (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / Czygrinow, Andrzej (Committee member) / Arizona State University (Publisher)
Created2011
150038-Thumbnail Image.png
Description
In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out

In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out that more than n^2/4 connections are needed, and no smaller number will suffice in general. Problems of this type fall into the category of ``extremal graph theory.'' Generally speaking, extremal graph theory is the study of how global parameters of a graph are related to local properties. This dissertation deals with the relationship between minimum degree conditions of a host graph G and the property that G contains a specified spanning subgraph (or class of subgraphs). The goal is to find the optimal minimum degree which guarantees the existence of a desired spanning subgraph. This goal is achieved in four different settings, with the main tools being Szemeredi's Regularity Lemma; the Blow-up Lemma of Komlos, Sarkozy, and Szemeredi; and some basic probabilistic techniques.
ContributorsDeBiasio, Louis (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Thesis advisor) / Hurlbert, Glenn (Committee member) / Kadell, Kevin (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2011
156583-Thumbnail Image.png
Description
Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs.

Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures.

Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.
ContributorsYie, Jangwon (Author) / Czygrinow, Andrzej (Thesis advisor) / Kierstead, Henry (Committee member) / Colbourn, Charles (Committee member) / Fishel, Susanna (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2018
136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136340-Thumbnail Image.png
Description
This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way.

This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way. Definitions and notation will be established, leading to explorations of three proofs of the regularity lemma. These are a version of the original proof, a Pythagoras proof utilizing elemental geometry, and a proof utilizing concepts of spectral graph theory. This paper is intended to supplement the proofs with background information about the concepts utilized. Furthermore, it is the hope that this paper will serve as another resource for students and others to begin study of the regularity lemma.
ContributorsByrne, Michael John (Author) / Czygrinow, Andrzej (Thesis director) / Kierstead, Hal (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
155047-Thumbnail Image.png
Description
Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

The two major issues concerning covering arrays are explicit construction of a covering array, and exact or approximate determination of the covering array number---the minimum size of a covering array. Although these problems have been investigated extensively for the last couple of decades, in this thesis we present significant improvements on both of these questions using tools from the probabilistic method and randomized algorithms.

First, a series of improvements is developed on the previously known upper bounds on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound is derived and the Stein- Lovász -Johnson bound is improved upon using an alteration strategy. Then group actions on the set of symbols are explored to establish two asymptotic upper bounds on covering array numbers that are tighter than any of the presently known bounds.

Second, an algorithmic paradigm, called the two-stage framework, is introduced for covering array construction. A number of concrete algorithms from this framework are analyzed, and it is shown that they outperform current methods in the range of parameter values that are of practical relevance. In some cases, a reduction in the number of tests by more than 50% is achieved.

Third, the Lovász local lemma is applied on covering perfect hash families to obtain an upper bound on covering array numbers that is tightest of all known bounds. This bound leads to a Moser-Tardos type algorithm that employs linear algebraic computation over finite fields to construct covering arrays. In some cases, this algorithm outperforms currently used methods by more than an 80% margin.

Finally, partial covering arrays are introduced to investigate a few practically relevant relaxations of the covering requirement. Using probabilistic methods, bounds are obtained on partial covering arrays that are significantly smaller than for covering arrays. Also, randomized algorithms are provided that construct such arrays in expected polynomial time.
ContributorsSarakāra, Kauśika (Author) / Colbourn, Charles J. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Richa, Andréa W. (Committee member) / Syrotiuk, Violet R. (Committee member) / Arizona State University (Publisher)
Created2016
149332-Thumbnail Image.png
Description
Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for

Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for one-dimensional molecules such as genetic material. It is not known precisely how much waste in the worst case is due to the first-fit algorithm for coloring interval graphs. However, after decades of research the range is narrow. Kierstead proved that the performance ratio R is at most 40. Pemmaraju, Raman, and Varadarajan proved that R is at most 10. This can be improved to 8. Witsenhausen, and independently Chrobak and Slusarek, proved that R is at least 4. Slusarek improved this to 4.45. Kierstead and Trotter extended the method of Chrobak and Slusarek to one good for a lower bound of 4.99999 or so. The method relies on number sequences with a certain property of order. It is shown here that each sequence considered in the construction satisfies a linear recurrence; that R is at least 5; that the Fibonacci sequence is in some sense minimally useless for the construction; and that the Fibonacci sequence is a point of accumulation in some space for the useful sequences of the construction. Limitations of all earlier constructions are revealed.
ContributorsSmith, David A. (Author) / Kierstead, Henry A. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Gelb, Anne (Committee member) / Hurlbert, Glenn H. (Committee member) / Kadell, Kevin W. J. (Committee member) / Arizona State University (Publisher)
Created2010
168389-Thumbnail Image.png
Description
A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the

A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the Steiner system, or vice-versa. Often, the popularities of the files of such storage systems run the gamut, with some files receiving hardly any attention, and others receiving most of it. For such systems, minimizing the difference in the collective popularity between any two storage units is nontrivial; this is the access balancing problem. With regard to the representative Steiner system, the access balancing problem in its simplest form amounts to constructing either a point or block labelling: an assignment of a set of integer labels (popularity ranks) to the Steiner system's point set or block set, respectively, requiring of the former assignment that the sums of the labelled points of any two blocks differ as little as possible and of the latter that the sums of the labels assigned to the containing blocks of any two distinct points differ as little as possible. The central aim of this dissertation is to supply point and block labellings for Steiner systems of block size greater than three, for which up to this point no attempt has been made. Four major results are given in this connection. First, motivated by the close connection between the size of the independent sets of a Steiner system and the quality of its labellings, a Steiner triple system of any admissible order is constructed with a pair of disjoint independent sets of maximum cardinality. Second, the spectrum of resolvable Bose triple systems is determined in order to label some Steiner 2-designs with block size four. Third, several kinds of independent sets are used to point-label Steiner 2-designs with block size four. Finally, optimal and close to optimal block labellings are given for an infinite class of 1-rotational resolvable Steiner 2-designs with arbitrarily large block size by exploiting their underlying group-theoretic properties.
ContributorsLusi, Dylan (Author) / Colbourn, Charles J (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fainekos, Georgios (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2021