Matching Items (64)
Filtering by

Clear all filters

154774-Thumbnail Image.png
Description
Internet and social media devices created a new public space for debate on political

and social topics (Papacharissi 2002; Himelboim 2010). Hotly debated issues

span all spheres of human activity; from liberal vs. conservative politics, to radical

vs. counter-radical religious debate, to climate change debate in scientific community,

to globalization debate in economics, and

Internet and social media devices created a new public space for debate on political

and social topics (Papacharissi 2002; Himelboim 2010). Hotly debated issues

span all spheres of human activity; from liberal vs. conservative politics, to radical

vs. counter-radical religious debate, to climate change debate in scientific community,

to globalization debate in economics, and to nuclear disarmament debate in

security. Many prominent ’camps’ have emerged within Internet debate rhetoric and

practice (Dahlberg, n.d.).

In this research I utilized feature extraction and model fitting techniques to process

the rhetoric found in the web sites of 23 Indonesian Islamic religious organizations,

later with 26 similar organizations from the United Kingdom to profile their

ideology and activity patterns along a hypothesized radical/counter-radical scale, and

presented an end-to-end system that is able to help researchers to visualize the data

in an interactive fashion on a time line. The subject data of this study is the articles

downloaded from the web sites of these organizations dating from 2001 to 2011,

and in 2013. I developed algorithms to rank these organizations by assigning them

to probable positions on the scale. I showed that the developed Rasch model fits

the data using Andersen’s LR-test (likelihood ratio). I created a gold standard of

the ranking of these organizations through an expertise elicitation tool. Then using

my system I computed expert-to-expert agreements, and then presented experimental

results comparing the performance of three baseline methods to show that the

Rasch model not only outperforms the baseline methods, but it was also the only

system that performs at expert-level accuracy.

I developed an end-to-end system that receives list of organizations from experts,

mines their web corpus, prepare discourse topic lists with expert support, and then

ranks them on scales with partial expert interaction, and finally presents them on an

easy to use web based analytic system.
ContributorsTikves, Sukru (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2016
153988-Thumbnail Image.png
Description
With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain

With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain webpages before getting at the webpage he/she wanted. This problem of Information Overload can be solved using Automatic Text Summarization. Summarization is a process of obtaining at abridged version of documents so that user can have a quick view to understand what exactly the document is about. Email threads from W3C are used in this system. Apart from common IR features like Term Frequency, Inverse Document Frequency, Term Rank, a variation of page rank based on graph model, which can cluster the words with respective to word ambiguity, is implemented. Term Rank also considers the possibility of co-occurrence of words with the corpus and evaluates the rank of the word accordingly. Sentences of email threads are ranked as per features and summaries are generated. System implemented the concept of pyramid evaluation in content selection. The system can be considered as a framework for Unsupervised Learning in text summarization.
ContributorsNadella, Sravan (Author) / Davulcu, Hasan (Thesis advisor) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
154329-Thumbnail Image.png
Description
The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.

Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.
ContributorsWang, Zhijie (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2016
155032-Thumbnail Image.png
Description
We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.

The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.

The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.
ContributorsMazumder, Anisha (Author) / Sen, Arunabha (Thesis advisor) / Richa, Andrea (Committee member) / Xue, Guoliang (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2016
155052-Thumbnail Image.png
Description
The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process.

Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have been proposed and analyzed in the last few years. However, most of these models are over-simplified and fail to capture the complex interdependencies that may exist between critical infrastructures. To overcome the limitations of existing models, this dissertation presents a new model -- the Implicative Interdependency Model (IIM) that is able to capture such complex interdependency relations. As the potential for a failure cascade in critical interdependent networks poses several risks that can jeopardize the nation, this dissertation explores relevant research problems in the interdependent power and communication networks using the proposed IIM and lays the foundations for further study using this model.

Apart from exploring problems in interdependent critical infrastructures, this dissertation also explores resource allocation techniques for environments enabled with cyber-physical systems. Specifically, the problem of efficient path planning for data collection using mobile cyber-physical systems is explored. Two such environments are considered: a Radio-Frequency IDentification (RFID) environment with mobile “Tags” and “Readers”, and a sensor data collection environment where both the sensors and the data mules (data collectors) are mobile.

Finally, from an applied research perspective, this dissertation presents Raptor, an advanced network planning and management tool for mitigating the impact of spatially correlated, or region based faults on infrastructure networks. Raptor consolidates a wide range of studies conducted in the last few years on region based faults, and provides an interface for network planners, designers and operators to use the results of these studies for designing robust and resilient networks in the presence of spatially correlated faults.
ContributorsDas, Arun (Author) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Fainekos, Georgios (Committee member) / Qiao, Chunming (Committee member) / Arizona State University (Publisher)
Created2016
152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
153279-Thumbnail Image.png
Description
There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile targets using the fewest number of mobile trackers, when the trajectories of all the targets are known in advance. Almost

There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile targets using the fewest number of mobile trackers, when the trajectories of all the targets are known in advance. Almost all the existing research discretized time (and/or space), or assume infinite tracker velocity. In this thesis, I consider the problem of covering (tracking) target nodes using a network of Unmanned Airborne Vehicles (UAV's) for the entire period of observation by adding the constraint of fixed velocity on the trackers and observing the targets in continuous time and space. I also show that the problem is NP-complete and provide algorithms for handling cases when targets are static and dynamic.
ContributorsVachhani, Harsh (Author) / Sen, Arunabha (Thesis advisor) / Saripalli, Srikanth (Committee member) / Shirazipour, Shahrzad (Committee member) / Arizona State University (Publisher)
Created2014
153574-Thumbnail Image.png
Description
In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).

The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.

In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.
ContributorsAwasthi, Piyush (Author) / Davulcu, Hasan (Thesis advisor) / Tong, Hanghang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
153478-Thumbnail Image.png
Description
US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.
ContributorsGokalp, Sedat (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2015
153342-Thumbnail Image.png
Description
Resource allocation is one of the most challenging issues policy decision makers must address. The objective of this thesis is to explore the resource allocation from an economical perspective, i.e., how to purchase resources in order to satisfy customers' requests. In this thesis, we attend to answer the question: when

Resource allocation is one of the most challenging issues policy decision makers must address. The objective of this thesis is to explore the resource allocation from an economical perspective, i.e., how to purchase resources in order to satisfy customers' requests. In this thesis, we attend to answer the question: when and how to buy resources to fulfill customers' demands with minimum costs?

The first topic studied in this thesis is resource allocation in cloud networks. Cloud computing heralded an era where resources (such as computation and storage) can be scaled up and down elastically and on demand. This flexibility is attractive for its cost effectiveness: the cloud resource price depends on the actual utilization over time. This thesis studies two critical problems in cloud networks, focusing on the economical aspects of the resource allocation in the cloud/virtual networks, and proposes six algorithms to address the resource allocation problems for different discount models. The first problem attends a scenario where the virtual network provider offers different contracts to the service provider. Four algorithms for resource contract migration are proposed under two pricing models: Pay-as-You-Come and Pay-as-You-Go. The second problem explores a scenario where a cloud provider offers k contracts each with a duration and a rate respectively and a customer buys these contracts in order to satisfy its resource demand. This work shows that this problem can be seen as a 2-dimensional generalization of the classic online parking permit problem, and present a k-competitive online algorithm and an optimal online algorithm.

The second topic studied in this thesis is to explore how resource allocation and purchasing strategies work in our daily life. For example, is it worth buying a Yoga pass which costs USD 100 for ten entries, although it will expire at the end of this year? Decisions like these are part of our daily life, yet, not much is known today about good online strategies to buy discount vouchers with expiration dates. This work hence introduces a Discount Voucher Purchase Problem (DVPP). It aims to optimize the strategies for buying discount vouchers, i.e., coupons, vouchers, groupons which are valid only during a certain time period. The DVPP comes in three flavors: (1) Once Expire Lose Everything (OELE): Vouchers lose their entire value after expiration. (2) Once Expire Lose Discount (OELD): Vouchers lose their discount value after expiration. (3) Limited Purchasing Window (LPW): Vouchers have the property of OELE and can only be bought during a certain time window.

This work explores online algorithms with a provable competitive ratio against a clairvoyant offline algorithm, even in the worst case. In particular, this work makes the following contributions: we present a 4-competitive algorithm for OELE, an 8-competitive algorithm for OELD, and a lower bound for LPW. We also present an optimal offline algorithm for OELE and LPW, and show it is a 2-approximation solution for OELD.
ContributorsHu, Xinhui (Author) / Richa, Andrea (Thesis advisor) / Schmid, Stefan (Committee member) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015