Matching Items (144)
Filtering by

Clear all filters

171921-Thumbnail Image.png
Description
With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving

With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving the privacy of individuals by protecting their information in the training process. One privacy attack that affects individuals is the private attribute inference attack. The private attribute attack is the process of inferring individuals' information that they do not explicitly reveal, such as age, gender, location, and occupation. The impacts of this go beyond knowing the information as individuals face potential risks. Furthermore, some applications need sensitive data to train the models and predict helpful insights and figuring out how to build privacy-preserving machine learning models will increase the capabilities of these applications.However, improving privacy affects the data utility which leads to a dilemma between privacy and utility. The utility of the data is measured by the quality of the data for different tasks. This trade-off between privacy and utility needs to be maintained to satisfy the privacy requirement and the result quality. To achieve more scalable privacy-preserving machine learning models, I investigate the privacy risks that affect individuals' private information in distributed machine learning. Even though the distributed machine learning has been driven by privacy concerns, privacy issues have been proposed in the literature which threaten individuals' privacy. In this dissertation, I investigate how to measure and protect individuals' privacy in centralized and distributed machine learning models. First, a privacy-preserving text representation learning is proposed to protect users' privacy that can be revealed from user generated data. Second, a novel privacy-preserving text classification for split learning is presented to improve users' privacy and retain high utility by defending against private attribute inference attacks.
ContributorsAlnasser, Walaa (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Shu, Kai (Committee member) / Bao, Tiffany (Committee member) / Arizona State University (Publisher)
Created2022
190719-Thumbnail Image.png
Description
Social media platforms provide a rich environment for analyzing user behavior. Recently, deep learning-based methods have been a mainstream approach for social media analysis models involving complex patterns. However, these methods are susceptible to biases in the training data, such as participation inequality. Basically, a mere 1% of users generate

Social media platforms provide a rich environment for analyzing user behavior. Recently, deep learning-based methods have been a mainstream approach for social media analysis models involving complex patterns. However, these methods are susceptible to biases in the training data, such as participation inequality. Basically, a mere 1% of users generate the majority of the content on social networking sites, while the remaining users, though engaged to varying degrees, tend to be less active in content creation and largely silent. These silent users consume and listen to information that is propagated on the platform.However, their voice, attitude, and interests are not reflected in the online content, making the decision of the current methods predisposed towards the opinion of the active users. So models can mistake the loudest users for the majority. To make the silent majority heard is to reveal the true landscape of the platform. In this dissertation, to compensate for this bias in the data, which is related to user-level data scarcity, I introduce three pieces of research work. Two of these proposed solutions deal with the data on hand while the other tries to augment the current data. Specifically, the first proposed approach modifies the weight of users' activity/interaction in the input space, while the second approach involves re-weighting the loss based on the users' activity levels during the downstream task training. Lastly, the third approach uses large language models (LLMs) and learns the user's writing behavior to expand the current data. In other words, by utilizing LLMs as a sophisticated knowledge base, this method aims to augment the silent user's data.
ContributorsKarami, Mansooreh (Author) / Liu, Huan (Thesis advisor) / Sen, Arunabha (Committee member) / Davulcu, Hasan (Committee member) / Mancenido, Michelle V. (Committee member) / Arizona State University (Publisher)
Created2023
171925-Thumbnail Image.png
Description
The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works

The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works have utilized the well known Set Cover formulation in order to determine the locations where sensors should be placed in the network, so that anomalies can be effectively detected. However, such works cannot be utilized to address the problem when the objective is to not only detect the presence of anomalies, but also to detect (distinguish) the source(s) of the detected anomalies, i.e., uniquely monitoring the network. In this dissertation, I attempt to fill in this gap by utilizing the mathematical concept of Identifying Codes and illustrating how it not only can overcome the aforementioned limitation, but also it, and its variants, can be utilized to monitor complex networks modeled from multiple domains. Over the course of this dissertation, I make key contributions which further enhance the efficacy and applicability of Identifying Codes as a monitoring strategy. First, I show how Identifying Codes are superior to not only the Set Cover formulation but also standard graph centrality metrics, for the purpose of uniquely monitoring complex networks. Second, I study novel problems such as the budget constrained Identifying Code, scalable Identifying Code, robust Identifying Code etc., and present algorithms and results for the respective problems. Third, I present useful Identifying Code results for restricted graph classes such as Unit Interval Bigraphs and Unit Disc Bigraphs. Finally, I show the universality of Identifying Codes by applying it to multiple domains.
ContributorsBasu, Kaustav (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2022
171864-Thumbnail Image.png
Description
Bitcoin (BTC) shares many characteristics with traditional stocks, but it is much more volatile since the cryptocurrency market is unregulated. The high volatility makes BTC a very high risk-high reward investment and predictive analysis can be very useful to obtain good returns and minimize risk. Taking Cocco et al. [1]

Bitcoin (BTC) shares many characteristics with traditional stocks, but it is much more volatile since the cryptocurrency market is unregulated. The high volatility makes BTC a very high risk-high reward investment and predictive analysis can be very useful to obtain good returns and minimize risk. Taking Cocco et al. [1] as the primary reference, this thesis tries to reproduce their findings by building two BTC price forecasting models, Long Short-Term Memory (LSTM) and Bayesian Neural Network (BNN), and finding that the Mean Absolute Percentage Error (MAPE) is lower for the initial BNN model in comparison to the initial LSTM model. In addition to forecasting the value of BTC, a metric called trend% is developed to gauge the models’ ability to capture the trend of how the price varies from one timestep to the next and used to compare the trend prediction performance. It is found that both initial models make random predictions for the trend. Improvements like removing the stochastic component from the data and forecasting returns as opposed to price values show that both models show comparable performance in terms of both MAPE and trend%. The thesis concludes by discussing the future work that can be done to potentially improve the above models. One of the possibilities mentioned is to use on-chain data from the BTC blockchain coupled with the real-world knowledge of BTC exchanges and feed this as input features to the models.
ContributorsMittal, Shivansh (Author) / Boscovic, Dragan (Thesis advisor) / Davulcu, Hasan (Committee member) / Candan, Kasim (Committee member) / Arizona State University (Publisher)
Created2022
168522-Thumbnail Image.png
Description
In some scenarios, true temporal ordering is required to identify the actions occurring in a video. Recently a new synthetic dataset named CATER, was introduced containing 3D objects like sphere, cone, cylinder etc. which undergo simple movements such as slide, pick & place etc. The task defined in the dataset

In some scenarios, true temporal ordering is required to identify the actions occurring in a video. Recently a new synthetic dataset named CATER, was introduced containing 3D objects like sphere, cone, cylinder etc. which undergo simple movements such as slide, pick & place etc. The task defined in the dataset is to identify compositional actions with temporal ordering. In this thesis, a rule-based system and a window-based technique are proposed to identify individual actions (atomic) and multiple actions with temporal ordering (composite) on the CATER dataset. The rule-based system proposed here is a heuristic algorithm that evaluates the magnitude and direction of object movement across frames to determine the atomic action temporal windows and uses these windows to predict the composite actions in the videos. The performance of the rule-based system is validated using the frame-level object coordinates provided in the dataset and it outperforms the performance of the baseline models on the CATER dataset. A window-based training technique is proposed for identifying composite actions in the videos. A pre-trained deep neural network (I3D model) is used as a base network for action recognition. During inference, non-overlapping windows are passed through the I3D network to obtain the atomic action predictions and the predictions are passed through a rule-based system to determine the composite actions. The approach outperforms the state-of-the-art composite action recognition models by 13.37% (mAP 66.47% vs. mAP 53.1%).
ContributorsMaskara, Vivek Kumar (Author) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2022
193380-Thumbnail Image.png
Description
Large Language Models (LLMs) have displayed impressive capabilities in handling tasks that require few demonstration examples, making them effective few-shot learn- ers. Despite their potential, LLMs face challenges when it comes to addressing com- plex real-world tasks that involve multiple modalities or reasoning steps. For example, predicting cancer patients’ survival

Large Language Models (LLMs) have displayed impressive capabilities in handling tasks that require few demonstration examples, making them effective few-shot learn- ers. Despite their potential, LLMs face challenges when it comes to addressing com- plex real-world tasks that involve multiple modalities or reasoning steps. For example, predicting cancer patients’ survival period based on clinical data, cell slides, and ge- nomics poses significant logistical complexities. Although several approaches have been proposed to tackle these challenges, they often fall short in achieving promising performance due to their inability to consider all modalities simultaneously or account for missing modalities, variations in modalities, and the integration of multi-modal data, ultimately compromising their effectiveness.This thesis proposes a novel approach for multi-modal tumor survival prediction to address these limitations. Taking inspiration from recent advancements in LLMs, particularly Mixture of Experts (MoE)-based models, a graph-guided MoE framework is introduced. This framework utilizes a graph structure to manage the predictions effectively and combines multiple models to enhance predictive power. Rather than training a single foundation model for end-to-end survival prediction, the approach leverages a MOE-guided ensemble to manage model callings as tools automatically. By leveraging the strengths of existing models and guiding them through a MOE framework, the aim is to achieve better performance and more accurate predictions in complex real-world tasks. Experiments and analysis on the TCGA-LUAD dataset show improved performance over the individual modal and vanilla ensemble models.
ContributorsMathavan, Hirthik (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Choi, YooJung (Committee member) / Arizona State University (Publisher)
Created2024
Description
Animal pose estimation (APE) is utilized in preclinical research settings for various neurological disorders such as Parkinson's disease (PD), Huntington's disease (HD) and multiple sclerosis. The technique includes real-time scoring of impairment in the animals during testing or video recording. This is a time-consuming operation prone to errors due to

Animal pose estimation (APE) is utilized in preclinical research settings for various neurological disorders such as Parkinson's disease (PD), Huntington's disease (HD) and multiple sclerosis. The technique includes real-time scoring of impairment in the animals during testing or video recording. This is a time-consuming operation prone to errors due to visual fatigue. To overcome these shortcomings, APE automation by deep learning has been studied. The field of APE has gone through significant development backed by improvements in deep learning techniques. These developments have improved 2D and 3D pose estimation, 3D mesh reconstruction and behavior prediction capabilities. As a result, there are numerous sophisticated tools and datasets available today. Despite these developments, APE still lags behind human observer scoring with respect to accuracy and flexibility under complex scenarios. In this project, two critical challenges are being addressed within the context of neurological research focusing on PD. The first challenge is about the lack of comprehensive diverse datasets necessary for accurate training as well as for fine-tuning deep learning models. This is compounded by the inherent difficulty in working with uncooperative rodent subjects, whose unpredictable behaviors often impede reliable data collection. The second challenge focuses on reduction in variation of scores that result from being scored by different evaluators. This will also involve tackling bias and reducing human error for the purpose of reliable and accurate assessments. In order to address these issues, systematic data collection and deep learning in APE have been utilized to automate manual scoring procedures. This project will contribute to neurological research, particularly in understanding and treating disorders like PD. The goal is to improve methods used in assessing rodent behavior which could aid in developing effective therapeutics. The successful implementation of an automated scoring mechanism could set a new standard in neurological research, offering insights and methodologies that are more accurate and reliable.
ContributorsJanapareddi, Ajay Kumar (Author) / Davulcu, Hasan (Thesis advisor) / Poste, George (Thesis advisor) / Kelley, Christy (Committee member) / Arizona State University (Publisher)
Created2024
193491-Thumbnail Image.png
Description
With the exponential growth of multi-modal data in the field of computer vision, the ability to do inference effectively among multiple modalities—such as visual, textual, and auditory data—shows significant opportunities. The rapid development of cross-modal applications such as retrieval and association is primarily attributed to their ability to bridge the

With the exponential growth of multi-modal data in the field of computer vision, the ability to do inference effectively among multiple modalities—such as visual, textual, and auditory data—shows significant opportunities. The rapid development of cross-modal applications such as retrieval and association is primarily attributed to their ability to bridge the gap between different modalities of data. However, the current mainstream cross-modal methods always heavily rely on the availability of fully annotated paired data, presenting a significant challenge due to the scarcity of precisely matched datasets in real-world scenarios. In response to this bottleneck, several sophisticated deep learning algorithms are designed to substantially improve the inference capabilities across a broad spectrum of cross-modal applications. This dissertation introduces novel deep learning algorithms aimed at enhancing inference capabilities in cross-modal applications, which take four primary aspects. Firstly, it introduces the algorithm for image retrieval by learning hashing codes. This algorithm only utilizes the other modality data in weakly supervised tags format rather than the supervised label. Secondly, it designs a novel framework for learning the joint embeddings of images and texts for the cross-modal retrieval tasks. It efficiently learns the binary codes from the continuous CLIP feature space and can even deliver competitive performance compared with the results from non-hashing methods. Thirdly, it conducts a method to learn the fragment-level embeddings that capture fine-grained cross-modal association in images and texts. This method uses the fragment proposals in an unsupervised manner. Lastly, this dissertation also outlines the algorithm to enhance the mask-text association ability of pre-trained semantic segmentation models with zero examples provided. Extensive future plans to further improve this algorithm for semantic segmentation tasks will be discussed.
ContributorsZhuo, Yaoxin (Author) / Li, Baoxin (Thesis advisor) / Wu, Teresa (Committee member) / Davulcu, Hasan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2024
187457-Thumbnail Image.png
Description
Experience, whether personal or vicarious, plays an influential role in shaping human knowledge. Through these experiences, one develops an understanding of the world, which leads to learning. The process of gaining knowledge in higher education transcends beyond the passive transmission of knowledge from an expert to a novice. Instead, students

Experience, whether personal or vicarious, plays an influential role in shaping human knowledge. Through these experiences, one develops an understanding of the world, which leads to learning. The process of gaining knowledge in higher education transcends beyond the passive transmission of knowledge from an expert to a novice. Instead, students are encouraged to actively engage in every learning opportunity to achieve mastery in their chosen field. Evaluation of such mastery typically entails using educational assessments that provide objective measures to determine whether the student has mastered what is required of them. With the proliferation of educational technology in the modern classroom, information about students is being collected at an unprecedented rate, covering demographic, performance, and behavioral data. In the absence of analytics expertise, stakeholders may miss out on valuable insights that can guide future instructional interventions, especially in helping students understand their strengths and weaknesses. This dissertation presents Web-Programming Grading Assistant (WebPGA), a homegrown educational technology designed based on various learning sciences principles, which has been used by 6,000+ students. In addition to streamlining and improving the grading process, it encourages students to reflect on their performance. WebPGA integrates learning analytics into educational assessments using students' physical and digital footprints. A series of classroom studies is presented demonstrating the use of learning analytics and assessment data to make students aware of their misconceptions. It aims to develop ways for students to learn from previous mistakes made by themselves or by others. The key findings of this dissertation include the identification of effective strategies of better-performing students, the demonstration of the importance of individualized guidance during the reviewing process, and the likely impact of validating one's understanding of another's experiences. Moreover, the Personalized Recommender of Items to Master and Evaluate (PRIME) framework is introduced. It is a novel and intelligent approach for diagnosing one's domain mastery and providing tailored learning opportunities by allowing students to observe others' mistakes. Thus, this dissertation lays the groundwork for further improvement and inspires better use of available data to improve the quality of educational assessments that will benefit both students and teachers.
ContributorsParedes, Yancy Vance (Author) / Hsiao, I-Han (Thesis advisor) / VanLehn, Kurt (Thesis advisor) / Craig, Scotty D (Committee member) / Bansal, Srividya (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2023
187520-Thumbnail Image.png
Description
Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from

Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from scalability challenges. It relies on the connectivity between the services and the vulnerabilities associated with the services to allow the system administrator to realize its security state. In addition, the security policies created by the administrator can have conflicts among them, which is often detected in the data plane of the Software Defined Networking (SDN) system. Such conflicts can cause security breaches and increase the flow rules processing delay. This dissertation addresses these challenges with novel solutions to tackle the scalability issue of Attack Graphs and detect security policy conflictsin the application plane before they are transmitted into the data plane for final installation. Specifically, it introduces a segmentation-based scalable security state (S3) framework for the cloud network. This framework utilizes the well-known divide-and-conquer approach to divide the large network region into smaller, manageable segments. It follows a well-known segmentation approach derived from the K-means clustering algorithm to partition the system into segments based on the similarity between the services. Furthermore, the dissertation presents unified intent rules that abstract the network administration from the underlying network controller’s format. It develops a networking service solution to use a bounded formal model for network service compliance checking that significantly reduces the complexity of flow rule conflict checking at the data plane level. The solution can be expended from a single SDN domain to multiple SDN domains and hybrid networks by applying network service function chaining (SFC) for inter-domain policy management.
ContributorsSabur, Abdulhakim (Author) / Zhao, Ming (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023