Matching Items (169)
Filtering by

Clear all filters

136173-Thumbnail Image.png
Description
The transition to lead-free solder in the electronics industry has benefited the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface

The transition to lead-free solder in the electronics industry has benefited the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. An additional short essay on the role of SEM on the continuing miniaturization of integrated circuits is included at the end. This paper explores the intertwined histories of the scanning electron microscope and the integrated circuit, highlighting how advances in SEM influence integrated circuit advances.
ContributorsSmith, Bethany Blair (Co-author) / Marion, Branch Kelly (Co-author) / Cruz, Hernandez (Co-author) / Kimberly, McGuiness (Co-author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133624-Thumbnail Image.png
Description
This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical

This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical therapist to represent an exercise session involving the user's hand and finger joints as a series of patterns. Fine motor rehabilitation plays an important role in the recovery and improvement of the effects of stroke, Parkinson's disease, multiple sclerosis, and more. Individuals with these conditions possess a wide range of impairment in terms of fine motor movement. The serious game developed takes this into account and is designed to work with individuals with different levels of impairment. In a pilot study, under partnership with South West Advanced Neurological Rehabilitation (SWAN Rehab) in Phoenix, Arizona, we compared the performance of individuals with fine motor impairment to individuals without this impairment to determine whether a human-centered approach and adapting to an user's range of motion can allow an individual with fine motor impairment to perform at a similar level as a non-impaired user.
ContributorsShah, Vatsal Nimishkumar (Author) / McDaniel, Troy (Thesis director) / Tadayon, Ramin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137481-Thumbnail Image.png
Description
We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI

We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI methods. We discuss how to correct these flaws once they are discovered. Finally, we discuss the Usable Security Development Model for developing usable secure systems.
ContributorsJorgensen, Jan Drake (Author) / Ahn, Gail-Joon (Thesis director) / VanLehn, Kurt (Committee member) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137492-Thumbnail Image.png
Description
This paper presents an overview of The Dyadic Interaction Assistant for Individuals with Visual Impairments with a focus on the software component. The system is designed to communicate facial information (facial Action Units, facial expressions, and facial features) to an individual with visual impairments in a dyadic interaction between two

This paper presents an overview of The Dyadic Interaction Assistant for Individuals with Visual Impairments with a focus on the software component. The system is designed to communicate facial information (facial Action Units, facial expressions, and facial features) to an individual with visual impairments in a dyadic interaction between two people sitting across from each other. Comprised of (1) a webcam, (2) software, and (3) a haptic device, the system can also be described as a series of input, processing, and output stages, respectively. The processing stage of the system builds on the open source FaceTracker software and the application Computer Expression Recognition Toolbox (CERT). While these two sources provide the facial data, the program developed through the IDE Qt Creator and several AppleScripts are used to adapt the information to a Graphical User Interface (GUI) and output the data to a comma-separated values (CSV) file. It is the first software to convey all 3 types of facial information at once in real-time. Future work includes testing and evaluating the quality of the software with human subjects (both sighted and blind/low vision), integrating the haptic device to complete the system, and evaluating the entire system with human subjects (sighted and blind/low vision).
ContributorsBrzezinski, Chelsea Victoria (Author) / Balasubramanian, Vineeth (Thesis director) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137174-Thumbnail Image.png
Description
Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.
ContributorsLarson, Grant Elliott (Author) / Davulcu, Hasan (Thesis director) / Ye, Jieping (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137197-Thumbnail Image.png
Description
This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United States Census Bureau, and allow users to interactively compare distributions

This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United States Census Bureau, and allow users to interactively compare distributions of names with regards to spatial location similarity and income. In order to enable interactive similarity exploration, we explore methods of pre-processing the data as well as on-the-fly lookups. As data becomes larger and more complex, the development of appropriate data storage and analytics solutions has become even more critical when enabling online visualization. We discuss problems faced in implementation, design decisions and directions for future work.
ContributorsIbarra, Jose Luis (Author) / Maciejewski, Ross (Thesis director) / Mack, Elizabeth (Committee member) / Longley, Paul (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137156-Thumbnail Image.png
Description
Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie studios invest heavily in pre-release advertisement. The most visible advertisement

Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie studios invest heavily in pre-release advertisement. The most visible advertisement is the movie trailer, which, in no more than two minutes and thirty seconds, serves as many people's first introduction to a film. The question, however, is how can we be confident that a trailer will succeed in its promotional task, and bring about the audience a studio expects? In this thesis, we use machine learning classification techniques to determine the effectiveness of a movie trailer in the promotion of its namesake. We accomplish this by creating a predictive model that automatically analyzes the audio and visual characteristics of a movie trailer to determine whether or not a film's opening will be successful by earning at least 35% of a film's production budget during its first U.S. box office weekend. Our predictive model performed reasonably well, achieving an accuracy of 68.09% in a binary classification. Accuracy increased to 78.62% when including genre in our predictive model.
ContributorsWilliams, Terrance D'Mitri (Author) / Pon-Barry, Heather (Thesis director) / Zafarani, Reza (Committee member) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05