Matching Items (99)
Filtering by

Clear all filters

151406-Thumbnail Image.png
Description
Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
ContributorsChithiraputhiran, Sundara Raman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniyam D (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
150550-Thumbnail Image.png
Description
Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design.
ContributorsVokshi, Erblina (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
132368-Thumbnail Image.png
Description
A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the

A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the reasons why particular combinations were more effective than others is explored.
ContributorsMazboudi, Yassine Ahmad (Author) / Yang, Yezhou (Thesis director) / Ren, Yi (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157623-Thumbnail Image.png
Description
Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models

Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models have seen numerous applications in both language and vision community as they capture the information in the modality (English language) efficiently. Inspired by these language models, this work focuses on learning embedding spaces for two visual computing tasks, 1. Image Hashing 2. Zero Shot Learning. The training set was used to learn embedding spaces over which similarity/dissimilarity is measured using several distance metrics like hamming / euclidean / cosine distances. While the above-mentioned language models learn generic word embeddings, in this work task specific embeddings were learnt which can be used for Image Retrieval and Classification separately.

Image Hashing is the task of mapping images to binary codes such that some notion of user-defined similarity is preserved. The first part of this work focuses on designing a new framework that uses the hash-tags associated with web images to learn the binary codes. Such codes can be used in several applications like Image Retrieval and Image Classification. Further, this framework requires no labelled data, leaving it very inexpensive. Results show that the proposed approach surpasses the state-of-art approaches by a significant margin.

Zero-shot classification is the task of classifying the test sample into a new class which was not seen during training. This is possible by establishing a relationship between the training and the testing classes using auxiliary information. In the second part of this thesis, a framework is designed that trains using the handcrafted attribute vectors and word vectors but doesn’t require the expensive attribute vectors during test time. More specifically, an intermediate space is learnt between the word vector space and the image feature space using the hand-crafted attribute vectors. Preliminary results on two zero-shot classification datasets show that this is a promising direction to explore.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2019
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
168842-Thumbnail Image.png
Description
There has been an explosion in the amount of data on the internet because of modern technology – especially image data – as a consequence of an exponential growth in the number of cameras existing in the world right now; from more extensive surveillance camera systems to billions of people

There has been an explosion in the amount of data on the internet because of modern technology – especially image data – as a consequence of an exponential growth in the number of cameras existing in the world right now; from more extensive surveillance camera systems to billions of people walking around with smartphones in their pockets that come with built-in cameras. With this sudden increase in the accessibility of cameras, most of the data that is getting captured through these devices is ending up on the internet. Researchers soon took leverage of this data by creating large-scale datasets. However, generating a dataset – let alone a large-scale one – requires a lot of man-hours. This work presents an algorithm that makes use of optical flow and feature matching, along with utilizing localization outputs from a Mask R-CNN, to generate large-scale vehicle datasets without much human supervision. Additionally, this work proposes a novel multi-view vehicle dataset (MVVdb) of 500 vehicles which is also generated using the aforementioned algorithm.There are various research problems in computer vision that can leverage a multi-view dataset, e.g., 3D pose estimation, and 3D object detection. On the other hand, a multi-view vehicle dataset can be used for a 2D image to 3D shape prediction, generation of 3D vehicle models, and even a more robust vehicle make and model recognition. In this work, a ResNet is trained on the multi-view vehicle dataset to perform vehicle re-identification, which is fundamentally similar to a vehicle make and recognition problem – also showcasing the usability of the MVVdb dataset.
ContributorsGuha, Anubhab (Author) / Yang, Yezhou (Thesis advisor) / Lu, Duo (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2022
168367-Thumbnail Image.png
Description
In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of

In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of deep networks from the cloud to edge devices. Unfortunately, many deep learning models cannot be efficiently implemented on edge devices as these devices are severely resource-constrained. In this thesis, I present QU-Net, a lightweight binary segmentation model based on the U-Net architecture. Traditionally, neural networks consider the entire image to be significant. However, in real-world scenarios, many regions in an image do not contain any objects of significance. These regions can be removed from the original input allowing a network to focus on the relevant regions and thus reduce computational costs. QU-Net proposes the salient regions (binary mask) that the deeper models can use as the input. Experiments show that QU-Net helped achieve a computational reduction of 25% on the Microsoft Common Objects in Context (MS COCO) dataset and 57% on the Cityscapes dataset. Moreover, QU-Net is a generalizable model that outperforms other similar works, such as Dynamic Convolutions.
ContributorsSanthosh Kumar Varma, Rahul (Author) / Yang, Yezhou (Thesis advisor) / Fan, Deliang (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2021