Matching Items (1,238)
Filtering by

Clear all filters

149668-Thumbnail Image.png
Description
Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different entities and physically distributed across the Internet. Compared with traditional software system components which are usually specifically designed for the target systems and bound tightly, the interfaces of services and their communication protocols are standardized, which allow SBS systems to support late binding, provide better interoperability, better flexibility in dynamic business logics, and higher fault tolerance. The development process of SBS systems can be divided to three major phases: 1) SBS specification, 2) service discovery and matching, and 3) service composition and workflow execution. This dissertation focuses on the second phase, and presents a privacy preserving service discovery and ranking approach for multiple user QoS requirements. This approach helps service providers to register services and service users to search services through public, but untrusted service directories with the protection of their privacy against the service directories. The service directories can match the registered services with service requests, but do not learn any information about them. Our approach also enforces access control on services during the matching process, which prevents unauthorized users from discovering services. After the service directories match a set of services that satisfy the service users' functionality requirements, the service discovery approach presented in this dissertation further considers service users' QoS requirements in two steps. First, this approach optimizes services' QoS by making tradeoff among various QoS aspects with users' QoS requirements and preferences. Second, this approach ranks services based on how well they satisfy users' QoS requirements to help service users select the most suitable service to develop their SBSs.
ContributorsYin, Yin (Author) / Yau, Stephen S. (Thesis advisor) / Candan, Kasim (Committee member) / Dasgupta, Partha (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
150383-Thumbnail Image.png
Description

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further research, the proposed models may become a powerful tool not only to overcome testing limitations but also to enhance current design practices and to prevent soil failure due to excessive development of pore water pressure.

ContributorsCary, Carlos (Author) / Zapata, Claudia E (Thesis advisor) / Wiczak, Matthew W (Thesis advisor) / Kaloush, Kamil (Committee member) / Sandra, Houston (Committee member) / Arizona State University (Publisher)
Created2011
150359-Thumbnail Image.png
Description
S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic (MTL) to describe the user specifications for the hybrid systems. We then try to falsify the MTL specification using global minimization of robustness metric. Global minimization is carried out using stochastic optimization algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO) algorithms. Irrespective of the type of the model we provide as an input to S-Taliro, the user needs to specify the MTL specification, the initial conditions and the bounds on the inputs. S-Taliro then uses this information to generate test inputs which are used to simulate the system. The simulation trace is then provided as an input to Taliro which computes the robustness estimate of the MTL formula. Global minimization of this robustness metric is performed to generate new test inputs which again generate simulation traces which are closer to falsifying the MTL formula. Traces with negative robustness values indicate that the simulation trace falsified the MTL formula. Traces with positive robustness values are also of great importance because they indicate how robust the system is against the given specification. S-Taliro has been seamlessly integrated into the Matlab environment, which is extensively used for model-based development of control software. Moreover the toolbox has been developed in a modular fashion and therefore adding new optimization algorithms is easy and straightforward. In this work I present the architecture of S-Taliro and its working on a few benchmark problems.
ContributorsAnnapureddy, Yashwanth Singh Rahul (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2011
150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture,

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

ContributorsAlossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2011
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
149919-Thumbnail Image.png
Description
The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified

The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified the Soil-Water Characteristic Curve as the most important soil property when dealing with unsaturated conditions. This soil property is unpopular among practitioners because the laboratory testing takes an appreciable amount of time. Several authors have attempted predicting the Soil-Water Characteristic Curve; however, most of the published predictions are based on a very limited soil database. The National Resources Conservation Service has a vast database of engineering soil properties with more than 36,000 soils, which includes water content measurements at different levels of suctions. This database was used in this study to validate two existing models that based the Soil-Water Characteristic Curve prediction on statistical analysis. It was found that although the predictions are acceptable for some ranges of suctions; they did not performed that well for others. It was found that the first model validated was accurate for fine-grained soils, while the second model was best for granular soils. For these reasons, two models to estimate the Soil-Water Characteristic Curve are proposed. The first model estimates the fitting parameters of the Fredlund and Xing (1994) function separately and then, the predicted parameters are fitted to the Fredlund and Xing function for an overall estimate of the degree of saturation. Results show an overall improvement on the predicted values when compared to existing models. The second model is based on the relationship between the Soil-Water Characteristic Curve and the Pore-Size Distribution of the soils. The process allows for the prediction of the entire Soil-Water Characteristic Curve function and proved to be a better approximation than that used in the first attempt. Both models constitute important tools in the implementation of unsaturated soil mechanics into engineering practice due to the link of the prediction with simple and well known engineering soil properties.
ContributorsTorres Hernández, Gustavo (Author) / Zapata, Claudia (Thesis advisor) / Houston, Sandra (Committee member) / Witczak, Matthew (Committee member) / Arizona State University (Publisher)
Created2011
149922-Thumbnail Image.png
Description
Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or

Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or low-level data entities. Also, additional domain knowledge may often be indispensable for uncovering the underlying semantics, but in most cases such domain knowledge is not readily available from the acquired media streams. Thus, making use of various types of contextual information and leveraging corresponding domain knowledge are vital for effectively associating high-level semantics with low-level signals with higher accuracies in multimedia computing problems. In this work, novel computational methods are explored and developed for incorporating contextual information/domain knowledge in different forms for multimedia computing and pattern recognition problems. Specifically, a novel Bayesian approach with statistical-sampling-based inference is proposed for incorporating a special type of domain knowledge, spatial prior for the underlying shapes; cross-modality correlations via Kernel Canonical Correlation Analysis is explored and the learnt space is then used for associating multimedia contents in different forms; model contextual information as a graph is leveraged for regulating interactions among high-level semantic concepts (e.g., category labels), low-level input signal (e.g., spatial/temporal structure). Four real-world applications, including visual-to-tactile face conversion, photo tag recommendation, wild web video classification and unconstrained consumer video summarization, are selected to demonstrate the effectiveness of the approaches. These applications range from classic research challenges to emerging tasks in multimedia computing. Results from experiments on large-scale real-world data with comparisons to other state-of-the-art methods and subjective evaluations with end users confirmed that the developed approaches exhibit salient advantages, suggesting that they are promising for leveraging contextual information/domain knowledge for a wide range of multimedia computing and pattern recognition problems.
ContributorsWang, Zhesheng (Author) / Li, Baoxin (Thesis advisor) / Sundaram, Hari (Committee member) / Qian, Gang (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
149901-Thumbnail Image.png
Description
Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical

Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical options, in order to narrow down the search and reach the desired result. Typical corpus-driven keyword query expansion approaches return popular words in the results as expanded queries. These empirical methods fail to cover all semantics of categories present in the query results. More importantly these methods do not consider the semantic relationship between the keywords featured in an expanded query. Contrary to a normal keyword search setting, these factors are non-trivial in an exploratory and ambiguous query setting where the user's precise discernment of different categories present in the query results is more important for making subsequent search decisions. In this thesis, I propose a new framework for keyword query expansion: generating a set of queries that correspond to the categorization of original query results, which is referred as Categorizing query expansion. Two approaches of algorithms are proposed, one that performs clustering as pre-processing step and then generates categorizing expanded queries based on the clusters. The other category of algorithms handle the case of generating quality expanded queries in the presence of imperfect clusters.
ContributorsNatarajan, Sivaramakrishnan (Author) / Chen, Yi (Thesis advisor) / Candan, Selcuk (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011