Matching Items (67)
Filtering by

Clear all filters

152992-Thumbnail Image.png
Description
In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in

In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in an icicle plot end up being small and indistinguishable. In this thesis, by maintaining the positive characteristics of traditional

icicle plots and incorporating new features such as dynamic diagram and active layer, we developed an interactive visualization that allows the user to selectively drill down or roll up to review different levels of data in a large hierarchy, to change the hierarchical

structure to detect potential patterns, and to maintain an overall understanding of the

current hierarchical structure.
ContributorsWu, Bi (Author) / Maciejewski, Ross (Thesis advisor) / Runger, George C. (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
152996-Thumbnail Image.png
Description
This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image,

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for a certain size.

Second, I propose a method for a user to understand and systematically explore good building layouts. Starting from a discrete set of good layouts, I analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. I represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts.

Finally, I propose an algorithm to computationally design street networks that balance competing requirements such as quick travel time and reduced through traffic in residential neighborhoods. The user simply provides high-level functional specifications for a target neighborhood, while my algorithm best satisfies the specification by solving for both connectivity and geometric layout of the network.
ContributorsBao, Fan (Author) / Wonka, Peter (Thesis advisor) / Maciejewski, Ross (Committee member) / Razdan, Anshuman (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2014
153051-Thumbnail Image.png
Description
Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different choices of mesh connectivity to represent the same 3D shape or surface. One key concept of QD mesh connectivity is the distinction between regular and irregular elements: a vertex with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four sides is regular; otherwise, it is irregular. For QD meshes, the placement of irregular elements is especially important since it largely determines the achievable geometric quality of the final mesh.

Traditionally, the research on QD meshes focuses on the automatic generation of pure quadrilateral or QD meshes from a given surface. Explicit control of the placement of irregular elements can only be achieved indirectly. To fill this gap, in this thesis, we make the following contributions. First, we formulate the theoretical background about the fundamental combinatorial properties of irregular elements in QD meshes. Second, we develop algorithms for the explicit control of irregular elements and the exhaustive enumeration of QD mesh connectivities. Finally, we demonstrate the importance of connectivity control for QD meshes in a wide range of applications.
ContributorsPeng, Chi-Han (Author) / Wonka, Peter (Thesis advisor) / Maciejewski, Ross (Committee member) / Farin, Gerald (Committee member) / Razdan, Anshuman (Committee member) / Arizona State University (Publisher)
Created2014
156193-Thumbnail Image.png
Description
With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable

With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information.

A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single seed node via it’s ego-centric network (AttriPart algorithm); (2) pathway identification between two seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR) algorithm); and (3) tree detection, defining the interaction between three or more seed nodes (Shortest Path MST algorithm).

In an effort to address both fundamental and applied research issues, we have developed the LocalForcasting algorithm to explore how network connectivity analysis can be applied to local community evolution and recommender systems. The goal is to apply the LocalForecasting algorithm to various domains---e.g., friend suggestions in social networks or future collaboration in co-authorship networks. This algorithm utilizes link prediction in combination with the AttriPart algorithm to predict future connections in local graph partitions.

Results show that our proposed AttriPart algorithm finds up to 1.6x denser local partitions, while running approximately 43x faster than traditional local partitioning techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demonstrates a significant improvement in the number of nodes and edges correctly predicted over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate a speed-up of up to 2.5x the standard k-simple shortest paths algorithm.
ContributorsFreitas, Scott (Author) / Tong, Hanghang (Thesis advisor) / Maciejewski, Ross (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
156205-Thumbnail Image.png
Description
The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations in text when different keywords are used for similar concepts.

This thesis develops a unique type of textual features that generalize triplets extracted from text, by clustering them into high-level concepts. These concepts are utilized as features to detect frames in text. Compared to uni-gram and bi-gram based models, classification and clustering using generalized concepts yield better discriminating features and a higher classification accuracy with a 12% boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-Frame detection.

The automatic discovery of complex causal chains among interlinked events and their participating actors has not yet been thoroughly studied. Previous studies related to extracting causal relationships from text were based on laborious and incomplete hand-developed lists of explicit causal verbs, such as “causes" and “results in." Such approaches result in limited recall because standard causal verbs may not generalize well to accommodate surface variations in texts when different keywords and phrases are used to express similar causal effects. Therefore, I present a system that utilizes generalized concepts to extract causal relationships. The proposed algorithms overcome surface variations in written expressions of causal relationships and discover the domino effects between climate events and human security. This semi-supervised approach alleviates the need for labor intensive keyword list development and annotated datasets. Experimental evaluations by domain experts achieve an average precision of 82%. Qualitative assessments of causal chains show that results are consistent with the 2014 IPCC report illuminating causal mechanisms underlying the linkages between climatic stresses and social instability.
ContributorsAlashri, Saud (Author) / Davulcu, Hasan (Thesis advisor) / Desouza, Kevin C. (Committee member) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
155717-Thumbnail Image.png
Description
Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people

Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago.

Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social media is seldom representative of the activity of the site itself, and less so of human activity. This means that the results of many studies are limited by the quality of data they collect.

The finding that social media data is biased inspires the main challenge addressed by this thesis. I introduce three sets of methodologies to correct for bias. First, I design methods to deal with data collection bias. I offer a methodology which can find bias within a social media dataset. This methodology works by comparing the collected data with other sources to find bias in a stream. The dissertation also outlines a data collection strategy which minimizes the amount of bias that will appear in a given dataset. It introduces a crawling strategy which mitigates the amount of bias in the resulting dataset. Second, I introduce a methodology to identify bots and shills within a social media dataset. This directly addresses the concern that the users of a social media site are not representative. Applying these methodologies allows the population under study on a social media site to better match that of the real world. Finally, the dissertation discusses perceptual biases, explains how they affect analysis, and introduces computational approaches to mitigate them.

The results of the dissertation allow for the discovery and removal of different levels of bias within a social media dataset. This has important implications for social media mining, namely that the behavioral patterns and insights extracted from social media will be more representative of the populations under study.
ContributorsMorstatter, Fred (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Maciejewski, Ross (Committee member) / Carley, Kathleen M. (Committee member) / Arizona State University (Publisher)
Created2017
155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
ContributorsKolak, Marynia Aniela (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio (Committee member) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2017
155738-Thumbnail Image.png
Description
Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.
ContributorsHoxha, Bardh (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Maciejewski, Ross (Committee member) / Ben Amor, Heni (Committee member) / Arizona State University (Publisher)
Created2017
155291-Thumbnail Image.png
Description
The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work

The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with the underlying network information to develop accurate models.

Visual analytics provides methods for data exploration, pattern recognition, and knowledge discovery. However, despite the long history of geovisualizations and network visual analytics, little work has been done to develop visual analytics tools that focus specifically on geographically networked phenomena. This thesis develops a variety of visualization methods to present data values and geospatial network relationships, which enables users to interactively explore the data. Users can investigate the connections in both virtual networks and geospatial networks and the underlying geographical context can be used to improve knowledge discovery. The focus of this thesis is on social media analysis and geographical hotspots optimization. A framework is proposed for social network analysis to unveil the links between social media interactions and their underlying networked geospatial phenomena. This will be combined with a novel hotspot approach to improve hotspot identification and boundary detection with the networks extracted from urban infrastructure. Several real world problems have been analyzed using the proposed visual analytics frameworks. The primary studies and experiments show that visual analytics methods can help analysts explore such data from multiple perspectives and help the knowledge discovery process.
ContributorsWang, Feng (Author) / Maciejewski, Ross (Thesis advisor) / Davulcu, Hasan (Committee member) / Grubesic, Anthony (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2017
155951-Thumbnail Image.png
Description
Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This

Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform data analytics. The functionalities of the application include offline lecture storage, live recording of classes, content analysis and reference generation. The knowledge base of videos is constructed by analyzing the offline data using machine learning techniques. This training dataset provides knowledge to construct the index of an online stream. The indexed metadata enables the students to search, view and access the relevant content. The performance of the application is benchmarked in different use cases to demonstrate the benefits of the hybrid model.
ContributorsNAGENDRA, SHILPA (Author) / Huang, Dijiang (Thesis advisor) / Zhao, Ming (Committee member) / Maciejewski, Ross (Committee member) / Chung, Chun-Jen (Committee member) / Arizona State University (Publisher)
Created2017