Matching Items (74)
Filtering by

Clear all filters

151527-Thumbnail Image.png
Description
Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation of effective, yet low-cost protection mechanism. The basic idea is that, there is a high probability that a soft-fault in program execution will eventually alter the control flow of the program. Therefore just by making sure that the control flow of the program is correct, significant protection can be achieved. More than a dozen techniques for CFC have been developed over the last several decades, ranging from hardware techniques, software techniques, and hardware-software hybrid techniques as well. Our analysis shows that existing CFC techniques are not only ineffective in protecting from soft errors, but cause additional power and performance overheads. For this analysis, we develop and validate a simulation based experimental setup to accurately and quantitatively estimate the architectural vulnerability of a program execution on a processor micro-architecture. We model the protection achieved by various state-of-the-art CFC techniques in this quantitative vulnerability estimation setup, and find out that software only CFC protection schemes (CFCSS, CFCSS+NA, CEDA) increase system vulnerability by 18% to 21% with 17% to 38% performance overhead. Hybrid CFC protection (CFEDC) increases vulnerability by 5%, while the vulnerability remains almost the same for hardware only CFC protection (CFCET); notwithstanding the hardware overheads of design cost, area, and power incurred in the hardware modifications required for their implementations.
ContributorsRhisheekesan, Abhishek (Author) / Shrivastava, Aviral (Thesis advisor) / Colbourn, Charles Joseph (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
151851-Thumbnail Image.png
Description
In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.
ContributorsYang, Hengyi (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2013
152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
ContributorsBoyd, Jeffrey Michael (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Shrivastava, Aviral (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
152796-Thumbnail Image.png
Description
The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and appealing user interface elements. With the sudden rise in demand of web applications, developers are making full use of the

The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and appealing user interface elements. With the sudden rise in demand of web applications, developers are making full use of the power of HTML5, JavaScript and CSS3 to cater to their users on various platforms. There was never a need of classifying the ways in which these languages can be interconnected to each other as the size of the front end code base was relatively small and did not involve critical business logic. This thesis focuses on listing and defining all dependencies between HTML5, JavaScript and CSS3 that will help developers better understand the interconnections within these languages. We also explore the present techniques available to a developer to make his code free of dependency related defects. We build a prototype tool, HJCDepend, based on our model, which aims at helping developers discover and remove defects early in the development cycle.
ContributorsVasugupta (Author) / Gary, Kevin (Thesis advisor) / Lindquist, Timothy (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2014
152905-Thumbnail Image.png
Description
Coarse-Grained Reconfigurable Architectures (CGRA) are a promising fabric for improving the performance and power-efficiency of computing devices. CGRAs are composed of components that are well-optimized to execute loops and rotating register file is an example of such a component present in CGRAs. Due to the rotating nature of register indexes

Coarse-Grained Reconfigurable Architectures (CGRA) are a promising fabric for improving the performance and power-efficiency of computing devices. CGRAs are composed of components that are well-optimized to execute loops and rotating register file is an example of such a component present in CGRAs. Due to the rotating nature of register indexes in rotating register file, it is very challenging, if at all possible, to hold and properly index memory addresses (pointers) and static values. In this Thesis, different structures for CGRA register files are investigated. Those structures are experimentally compared in terms of performance of mapped applications, design frequency, and area. It is shown that a register file that can logically be partitioned into rotating and non-rotating regions is an excellent choice because it imposes the minimum restriction on underlying CGRA mapping algorithm while resulting in efficient resource utilization.
ContributorsSaluja, Dipal (Author) / Shrivastava, Aviral (Thesis advisor) / Lee, Yann-Hang (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2014
152909-Thumbnail Image.png
Description
This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the form of logs from students' tablets and the vocal interaction

This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the form of logs from students' tablets and the vocal interaction between pairs of students. Thousands of different features were defined, and then extracted computationally from the audio and log data. Human coders used richer data (several video streams) and a thorough understand of the tasks to code episodes as

collaborative, cooperative or asymmetric contribution. Machine learning was used to induce a detector, based on random forests, that outputs one of these three codes for an episode given only a characterization of the episode in terms of superficial features. An overall accuracy of 92.00% (kappa = 0.82) was obtained when

comparing the detector's codes to the humans' codes. However, due irregularities in running the study (e.g., the tablet software kept crashing), these results should be viewed as preliminary.
ContributorsViswanathan, Sree Aurovindh (Author) / VanLehn, Kurt (Thesis advisor) / T.H CHI, Michelene (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2014
152844-Thumbnail Image.png
Description
For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the

For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the tangible learning environment and help researchers to better understand how we can design tangible learning environments to best support student learning. Specifically, the prompts explicitly encourage users to make use of their physical environment by asking students to perform a number of gestures and behaviors while prompting students about domain-specific knowledge. To test the effectiveness of these prompts that combine elements of cognition and physical movements, the performance and behavior of students who encounter these prompts while using TAG will be compared against the performance and behavior of students who encounter a more traditional set of cognitive prompts that would typically be used within a virtual learning environment. Following this study, data was analyzed using a novel modeling and analysis tool that combines enhanced log annotation using video and user model generation functionalities to highlight trends amongst students.
ContributorsThomas, Elissa (Author) / Burleson, Winslow (Thesis advisor) / Muldner, Katarzyna (Committee member) / Walker, Erin (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014
152976-Thumbnail Image.png
Description
Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses

Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses (MOOCs), students across the world are able to access and learn material remotely. This creates a need for tools that support distant or remote collaboration. In order to build such tools we need to understand the basic elements of remote collaboration and how it differs from traditional face-to-face collaboration.

The main goal of this thesis is to explore how spoken dialogue varies in face-to-face and remote collaborative learning settings. Speech data is collected from student participants solving mathematical problems collaboratively on a tablet. Spoken dialogue is analyzed based on conversational and acoustic features in both the settings. Looking for collaborative differences of transactivity and dialogue initiative, both settings are compared in detail using machine learning classification techniques based on acoustic and prosodic features of speech. Transactivity is defined as a joint construction of knowledge by peers. The main contributions of this thesis are: a speech corpus to analyze spoken dialogue in face-to-face and remote settings and an empirical analysis of conversation, collaboration, and speech prosody in both the settings. The results from the experiments show that amount of overlap is lower in remote dialogue than in the face-to-face setting. There is a significant difference in transactivity among strangers. My research benefits the computer-supported collaborative learning community by providing an analysis that can be used to build more efficient tools for supporting remote collaborative learning.
ContributorsNelakurthi, Arun Reddy (Author) / Pon-Barry, Heather (Thesis advisor) / VanLehn, Kurt (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2014
153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
153089-Thumbnail Image.png
Description
A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other

A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other portable computing systems, energy is a limited resource. Based on the energy characterization of a commercial widely-used smartphone, application cores are found to consume a significant part of the total energy consumption of the device. With this insight, the subsequent part of this thesis focuses on the portion of energy that is spent to move data from the memory system to the application core's internal registers. The primary motivation for this work comes from the relatively higher power consumption associated with a data movement instruction compared to that of an arithmetic instruction. The data movement energy cost is worsened esp. in a System on Chip (SoC) because the amount of data received and exchanged in a SoC based smartphone increases at an explosive rate. A detailed investigation is performed to quantify the impact of data movement

on the overall energy consumption of a smartphone device. To aid this study, microbenchmarks that generate desired data movement patterns between different levels of the memory hierarchy are designed. Energy costs of data movement are then computed by measuring the instantaneous power consumption of the device when the micro benchmarks are executed. This work makes an extensive use of hardware performance counters to validate the memory access behavior of microbenchmarks and to characterize the energy consumed in moving data. Finally, the calculated energy costs of data movement are used to characterize the portion of energy that MobileBench applications spend in moving data. The results of this study show that a significant 35% of the total device energy is spent in data movement alone. Energy is an increasingly important criteria in the context of designing architectures for future smartphones and this thesis offers insights into data movement energy consumption.
ContributorsPandiyan, Dhinakaran (Author) / Wu, Carole-Jean (Thesis advisor) / Shrivastava, Aviral (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2014